

Mechanisms of resistance to antibiotics

Novembre 2019

European Antibiotic Awareness Day (EAAD) will be marked on Monday 18 November 2019, in partnership with WHO's World Antibiotic Awareness Week (18 – 24 November 2019).

MEET SUI MIC E LE RELA EPIDEM	ING MULTIDISCIPLINARE RORGANISMI MULTIDRUG RESISTANT TIVE PROBLEMATICHE MICROBIOLOGICHE, IOLOGICHE, DIAGNOSTICHE E CLINICHE
CEUB	BERTINORO- 27 NOVEMBRE 2019
10.30 - 13.00 10.30 - 13.00 I SESSIONE Chairpersons 10.30 11.00 11.30 12.00 12.30 13.10	Welcome coffee Microbiologia dei germi multiresistenti Caudio Faina, Vittorio Sambri Meccanismi di resistenza al farmaci antibatterici - Stefania Stefani Storia e prospettiva della resistenza al farmaci antibatterici - Paolo Fazi Metodi microbiologi per la identificazione dei batteri multi resistenti - Edoardo Carretto Metodologie molecolari per la identificazione dei batteri multi resistenti - Vittorio Sambri Metodi anziobatta AMIC Caudio farina - Stefania Yanni
14.00 - 16.30 II SESSIONE Chairpersons 14.00 14.30 15.00 15.30 16.00 16.30	Egine cuican Epidemiologia, sorveglianza e rilevanza clinica dei germi MDR Francesco Cristini, Vanni Agnoletti Epidemiologia de germi MDR in formagna: il nucleo SPAR - Carlo Biagetti Le infecioni da germi MDR en paziente critico - Maurizo Fusari L'impatto della AMR nel paziente encoematologico - Francesco Lanza Le infecioni da germi MDR en paziente oncoematologico - Francesco Lanza Le infecioni da germi MDR nel noje i Giorgio Ercolani Conclusioni - Vittorio Sambri Wertina dell'apprendimento
Provider & Segreteria Organizzativa Provider & Constantia www.procentist - info@procestist is ringrazia per II Contributor Bulcazionale Non Condizionante	Information General Lowers in the according of United States cont 1 n. 2773-27743 and has etermine 5 credit ICCP per n. Bit printigent Market in the animation. Binary Kronic Lower and I. Lower and Market in the According of United States and According of United States and According of United States and According of United States Market in the According of United States and According of United States and According of United States Contents and According of United States and According of United States According of United States and According of Uni

Stefania Stefani Dipartimento di Scienze Biomediche e Biotecnologiche Policlinico – UNICT

Rappresentante SIM presso Ministero salute per PNCAR Gruppo di coordinamento progetto Sepsi - REGIONE SICILIA Responsabile Sorveglianze PNCAR SICILIA

Dichiarazione su potenziali conflitti di interesse Consultant and board of speakers: *Pfizer Italy and Europe, MSD, Angelini, Nordic Pharma, Accelerate, Correvio Biomerieux, Cepheid* Research grants *DMG, Biotest, Zambon Italia, Basilea Pharma, Nordic Pharma, IHMA – Europe and USA, Liofilchem*

WHO PRIORITY PATHOGENS LIST FOR R&D OF NEW ANTIBIOTICS Priority 1: CRITICAL[#]

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

*Enterobacteriaceae**, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Best available evidence

- 1. All-cause mortality
- 2. Healthcare and community burden
- 3. Prevalence of resistance
- 4. 10-year trend of resistance
- 5. Transmissibility
- 6. Preventability in hospital and community settings
- 7. Treatability and current pipeline

Ginevra, 25-27 Gennaio 2017

-

GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS

World Health Organization requested by Member States to develop a global PP List of antibiotic-resistant bacteria

Previous PPLs, issued by

- CDC, Antibiotic Resistance Threats in the U. States, 2013
- Public Health Agency of Canada (PLoS One. 2015;10:1-11) focused on national public health priorities to increase scientific, political and public awareness without including specific R&D criteria

Resistenza agli antibiotici: i numeri in Europa

671.689 infezioni resistenti alla cura con antibiotici riscontrate nel 2015 (dato mediano)

33.000 persone morte per infezioni resistenti

l Paesi europei con un *burden* maggiore dovuto alle infezioni da batteri resistenti sono l'Italia e la Grecia

DALY o disabilità attribuibile

misura la gravità globale di una malattia espressa come il numero di anni persi a causa della malattia per disabilità o per morte prematura 1 DALY equivale ad 1 anno di vita persa

74.541 DALY solo nel 2015 da infezioni causate da batteri resistenti agli antibiotici

La proporzione di DALY dovuta a tutti i batteri resistenti ai carbapenemi, antibiotici di ultima generazione, è del 28%

La resistenza agli antibiotici è una minaccia sempre più grave per la salute pubblica globale e richiede l'intervento di tutti i settori governativi e della società in generale

UTILIZZA GLI ANTIBIOTICI IN MODO CONSAPEVOLE, FAI LA TUA PARTE

How did we get to this point?

Just a flash back.....

Resistance mechanisms - FADOI - 2019

Introduction of new antibiotic classes

Development of bacterial resistance

Mechanisms of resistance

- Altered permeability
- Altered target site
- Replacement of a sensitive pathway
- Inactivation of the antimicrobial agent
- <u>A single microrganism can have multiple</u> <u>mechanisms of resistance</u>

Resistance mechanisms - FADOI - 2019

Mechanisms of transmission

Highly transmissible clone

LGT

Explained with an example

Resistance mechanisms - FADOI - 2019

CLONI EPIDEMICI AD ALTO RICHIO (HIR)

How are *bla*_{KPC} genes transferred?

Pitout J.D. et al. Antimicrop Agents chemother 2015

Sheppard et al 2016 Antimicrob Agents Chemother. 60:3767-3778. doi:10.1128/AAC.00464-16

One of the more flexible mechanism of resistance

Beta-lactamase

Table 2. Overview of β -lactamases.

Swedich			Resistance phenotype ^A						
ESBL- Terminology	Common name	Ambler class	Examples	Pc./ 1GC	3GC	Carba- penem	Diagnostic inhibitor	Clinical inhibitor	
	Penicillinase	А	Staphylococcal enzymes	Pc. only			-	CLA, TAZ, AVĻ VAB	
-	Oxacillinase	D	OXA-1	Oxacillin			-	AVI	
	Broad-spectrum penicillinase	А	TEM-1 ^B , SHV-1 ^B	x			-	CLA, TAZ, AVI, VAB	
ESBLA	Extended-spectrum β-lactamase	А	CTX-M, TEM ^B , SHV ^B	х	x		CLA	CLA, TAZ, AVI, VAB	
ESBL_{M}	Plasmid AmpC cephalosporinase	С	pAmpC CIT, CMY, DHA	х	х		Cloxacillin	AVI, VAB	
-	Chromosomal AmpC cephalosporinase	С	cAmpC	х	х		Cloxacillin	AVI, VAB	
	Serine carbapenemase	А	KPC, IMI, SME	х	х	х	Boronic acid	AVI, VAB	
FSBL	Metallo-β-lactamase	в	NDM, IMP, VIM	х	х	x	EDTA	-	
LOC DE LE CAKBA	Carbapenem-hydrolysing class D enzyme (Oxacillinase-derived)	D	OXA-48	x		x	-	AVI	

A"x" means that the agent is a substrate for the enzyme. The level of resistance varies, some isolates appear susceptible despite presence of the enzyme.

¹⁰There are hundreds of different TEM- and SHV- enzymes. Some can hydrolyse 3GC (ESBLA) and some (e.g. TEM-1 and SHV-1) only hydrolyse 1GC and are not classified as ESBLs.

IGC: 1st generation cephalosporin; 3GC: 3^{sd} generation cephalosporin; Pc.: penicillin; CLA: clavulanic acid; TAZ: tazobactam; AVI: avibactam, VAB: vaborbactam

Table based on information in several reviews [15, 22-26].

Overview of antibiotics with effect on Gram-Legenda: negative bacteria in clinical use + R uncommon < 20%

(+) used in combination +/- R common

(-) usually R

Antibiotic class Beta-lactams	Examples	Activity against ESBL PE	Activity against NDM	Target	Mode of resistance
Penicillins	Ampicillin	-	-		
3G –C	Cefotaxime Ceftriaxone Ceftazidime	(-) (-) (-)	- -		
Carbapenems	Ertapenem Imipenem Meropenem	+ + +	- +/- +/-	Cell membrane Peptidoglycan synthesis	Hydrolisis Altered targets Porin loss Efflux
Monobactams	Aztreonam	-	+/-		
Beta-lactams +BLI	Piperacillin/tazobactam Ceftazidime/avibactam Ceftolozano/tazobactam Meropenem/vaborbactam	+ + + +	- - - +/-		

Modified by Morara et al Ann Rev Genet 2010

Antibiotic class others	Examples	Activity against ESBL PE	Activity against NDM	Target	Mode of resistance
Aminoglycosides	Amikacin Gentamicin Tobramycin	+ +/- +/-	- -	Traslation	Phsphrylation, acetylation, nucleotydlation, efflux, altered target
Fluoroquinolones	Ciprofloxacin Levofloxacin	+/- +/-	(-) (-)	DNA replication	Acetylation efflux, altered target
Sulphonamides	Trimethoprim/sulfa	+/-	(-)	Nucleotide symthesis, C metabolism	Efflux, altered target
Cationic peptides	Colistin	+	+	Cell membrane, lipid A	Aletred target, efflux
Rifamycin	Rifampicin	(+)	(+)	Transcription	Altered target, efflux
Glycilcycline	Tigecycline Eravacycline	+ +	(-) (-)	Translation	Monooxygenation, efflux, altered target
Phosponic acid	Fosfomycin	+	(-)	Cell membrane, peptidoglycan synthesis	Decreased permeability, enzymatic modification

Italy

Staphylococcus aureus

- One of the most problematic human pathogens¹
- MSSA and MRSA rank as the second most common causes of hospital-associated bloodstream infections and are associated with increased mortality and longer hospital stay²
- Epidemiological settings: HA, CA, LA
- The S.aureus species population has been classified by molecular methods and belongs to more than ten dominant human lineages or clonal complexes (CC), with abundant minor lineages with different geographycal distribution³
- S.aureus is a persistent resident of the human nose in 20% of healthy population and is an intermittent colonizer in another 80%⁴
- S.aureus pathogenicity is very complex, and <u>adaptation</u> is the key point of its success
- MRSA infections: increased mortality rate

4) Cokfield JD et al – J med Microbiol 2007; 56: 814

¹⁾ Levy FD – NEJM 1998; 339: 520; 2) Espisito S et al – JGAR 2013; 1: 71; 3) Chambers HF et al – Nat Rev Micorbiol 2009; 7: 629;

PROPORTION OF INTERNALIZED BACTERIA USING EX-VIVO ASSAYS AND OBSERVATION BY CONFOCAL MICROSCOPY

LEICA TCS SP3 CONFOCAL

•Green: *S.aureus* cells Vancomycin-Bodipy FL[®] (bacterial CW)

•Red: MG63 cytoskeleton Rodamin/palloidin (α-tubulin)

•Blue: MG63 nucleus DAPI (DNA)

Comparison of the proportion of internalized bacteria in MG63 osteoblastic cells for ATCC12598 invasive isolate and for selected MRSA clinical isolates. Data are represented as the means and standard deviations of three replicate cultures from all ex vivo assays. All RIF-R strains showed a percentage of SCVs ranging from 2-10% (ATCC12598: 0.28 CFU/osteoblast). Bongiorno D et al. ECCMID 2018 P1256

Enterococci

Resistance mechanisms - FADOI - 2019

Antimicrobial resistance 👻 Enterococcus faecium 💌 Vancomycin 💌 Resistant (R) isolates proportion 💌 🕨 📢 2018 💌 🕪

Surveillance Atlas of Infectious Diseases

Antimicrobial resistance 🔻 Enterococcus faecalis 🔻 Vancomycin 🔻 Resistant (R) isolates proportion 💌 🕨 📢 2018 💌 🌬

Antimicrobial resistance 🔻 Enterococcus faecium 🔻 Aminopenicillins 🔻 Resistant (R) isolates proportion 💌 🕨 帐 2018 💌 🍻

Surveillance Atlas of Infectious Diseases

Antimicrobial resistance 👻 Enterococcus faecalis 👻 Aminopenicillins 🔻 Resistant (R) isolates proportion 💌 🕨 🔫 2018 💌 🎶

Enterococci: something is happening in PBPs binding.....

Etaat

					Elesi						
code	 P	TZP	АМР	SAM	AML	АМС	IMP	CAZ	стх	FEP	BPR
ATCC29212 E.fs	8	4	1	0.5	0.25	0.5	2	64	4	16	0.25
ATCC51299 E.fs vanB	2	2 (*)	0.5	1	0.5	1	4	64	4	32	0.5
JH2-2 E.fs	4	4 (>256*)	1	0.5	0.5	0.5	2	32	2	16	0.25 (<32*)
6109525 E.fs	>32	12	2	2	0.5	1	4	>256	>32	>256	>32
6189258 E.fs	2	4	1	1	0.5	0.5	4	>256	>32	125	1
6108956 E.fs	1	4	2	2	1	1	4	>256	>32	32	0.25
6058833 E.fs	0.5	4	1	2	1	1	4	>256	>32	32	2
								ceftazidime	ceftriaxone	cefepime	Ceftobibrole
								III g	III g	IV g	Vg

The MDR Gram negative storm

Antimicrobial resistance *

Italy

Greece

< 2018 💌 🕨

- b-

Resistant (R) isolates proportion, by age

Year

Antimicrobial resistance 🔻 Klebsiella pneumoniae 🔻 Third-generation cephalosporins 🔻 Resistant (R) isolates proportion 🔻 🕨 📢 2018 🔻 🕨

•

Antimicrobial resistance 🔻 Klebsiella pneumoniae 🔻 Combined resistance (third-generation cephalosporin, fluor

Resistant (R) isolates proportion 🔻 🗼

4 2018 🔻

Combined resistance (third-generation cephalosporin, fluoroquinolones and aminoglycoside) \blacksquare

Resistant (R) isolates proportion Resistant (R) isolates proportion (-)Clear 🗙 🛛 Filter 💥 $(\mathbf{+})$ Region 2.5 (%) 0.0 (%) rceiano <1% Ireland 8.1 Italy 24.8 1-<5% Latvia 27.6 5-<10% Lithuania 45.1 10-<25% Luxembourg 15.3 43.8 Malta 25-<50% Netherlands 4.7 50-<75% 3.8 Norway Poland 51.5 >=75% ****** 26.7 Portugal No data Romania 46.3 Classalsia 40 -

Antimicrobial resistance 🔻 Acinetobacter spp. 👻 Combined resistance (fluoroquinolones, aminoglycosides and carbapenems) 🔻 Resistant (R) isolates proportion 💌

▶ ◀ 2018 ▼ ▶

Acinetobacter: a huge family of microrganisms

Comuni patogeni umani							
A. baumannii (genospecies 2)						
A. nosocomialis	s (genospecies 137	ΓU)					
A. pittii (genosp	pecies 3)						
A. calcoaceticu	s (genospecies 1)						
Sp	Specie meno comuni nelle infezioni umane						
A. baylyi	A. guillouiae	A. lwoffii	A. soli				
A. beijerinckii	A. gyllenbergii	A. nectaris	A. tandoii				
A. bereziniae	A. haemolyticus	A. parvus	A. tjernbergiae				
A. boissieri	A. harbinensis	A. puyangensis	A. towneri				
A. bouvetii	A. indicus	A. qingfengensis	A. ursingii				
A. brisouii A. johnsonii A. radioresistens A. venetianu							
A. gerneri	A. junii	A. rudis					
A. grimontii ^a	A. kookii	A. schindleri					

^aSynonym of *A. junii*.

Tab.3 MLST e PFGE

Серро	MLST A. baumannii Pasteur Institute	MLST A. baumannii Oxford University	PFGE Profilo Cloni
1 R	ST 187	ST 1839; 281	А
2 R	ST 2	ST 1839	А
3 R	ST 2	ST 1816; 195	А
4 R	ST 2	ST 218	А
5R	ST 2	ST 1808; 348	А
6R	ST 2	ST 1808; 348	А
7R	ST 2	ST 1808; 348	А
8R	ST 2	ST 1808; 348	А
9R	ST 2	ST 1808; 348	А

Col R

Very rare

Often heteroresistance

Heteroresistance: a diffused phenomenon

Dovere V., Cafiso V., Stefani S. PhD thesis 2019, unpublished

Frequenza valori di MIC per ceppo

In-depth Resistome Analysis in Clinical Isolates

Our experience and contribution....

COL-R/Carbapenem-R *A.baumannii* represents a significant challenge for antibiotic treatment due to the **lack of new antimicrobials,** the development of new strategies and new antibiotics, effective against these resistant strains, is urgently needed.

Daptomycin (DAP) *Staphylococcus aureus* infections is one of the few **last-resort treatments** for low-level vancomycin resistant (hVISA/VISA). DAP-resistance onset, also linked to reduced vancomycin susceptibility, is a public health issue.

OPEN d ACCESS Freely available online	🧐 PLoS one				_	International Journal of Antimicrobial Agents 43 (2014) 26–31
Modulating Activity of Vancomycin and Daptomycin or the Expression of Autolysis Cell-Wall Turnover and		OPEN @ ACCESS Freely available online			I	Contents lists available at ScienceDirect International Journal of Antimicrobial Agents FLNEVIER Journal homepage: http://www.elsevier.com/locate/ijantimicag
Membrane Charge Genes in hVISA Viviana Cafiso ¹ , Taschia Bertuccio ¹ , Daniela Spina ¹ , Simona Purru Pietro ² , Michele Purrello ² , Stefania Stefani ¹ * ¹ Und of Microbiology, Department of Bio-Medical Sciences University of Catania, Catania, Italy, 2Unit of G Department Gian <i>Filippo Ingressia</i> , Catania, Italy	and VISA Strains ello ¹ , Floriana Campanile ¹ , Cinzia Di enome and Molecular Complex Systems BioMedicine G Sich	Phenotypic and Daptomycin-Resi Staphylococcus a and dlt Operons Stefania Stefani ² , Viviana Cafi Soc-Jin Yang ^{1,2} , 10Mien of Interiors Disease, Lo Angels Bio Geffer School dhecher at UCL, Lo Angel Tibligen, Children at Scholar Adoman Cafe Soc-Jin Yang ^{1,2} , 10Mien of Interiors Disease, Lo Angels Bio Geffer School dhecher at UCL, Lo Angel Tibligen, Children at Scholar of Model Angelse, California, United Stare d America	c and Genotypic Characterization of in-Resistant Methicillin-Resistant <i>occus aureus</i> Strains: Relative Roles of <i>mprF</i> berons ^{a,2,3} , Arnold S. Bayer ^{1,2,3} , Christopher Weidenmaier ^{3,4} , Timo Grau ³ , Stefanie Wanner ³ , <i>tiviana</i> Caflso ⁵ , Taschia Bertuccio ⁵ , Michael R. Yeaman ^{1,2,4} , Cynthia C. Nast ^{2,7} , rs. Ios Argels Bomedra Research Ionita: at Induce VLA Media Centre, Tamace, California, Unide States of Armoia, 2 the David UALA. Ins Angles, Chaina, Luido States of Merica, 2 the David UALA. Ins Angles, Chaina, Luido States of Merica, 2 the David of Mediat Mediation, HubberGuard, Diff. Tableges, Gemany, 3 Department of Biomedial Sciences Microbiolog, University of an Mediation Medicin, HubberGuard, Medial Center, Larona, United States of Armeia, 2 the David UAL Mark Angles, Charling Ling Sciences, Microbiology, University of an Mediation Medical Center, Larona, Linder States of Armeia, 2 The Medical Center, Line et A America.		Mark dl re Viv Ca *Dep *Dep *Dep *Dep *Dep *Dep	dltA overexpression: A strain-independent keystone of daptomycin Image: Constant resistance in methicillin-resistant Staphylococcus aureus Image: Constant Viviana Cafiso ^a , Taschia Bertuccio ^a , Simona Purrello ^a , Floriana Campanile ^a , Caterina Mammina ^b , Assunta Sartor ^c , Annibale Raglio ^d , Stefania Stefani ^a ** Image: Constant "paperment of Simonda Simon-Amobility, Interestory of Camata Vis Andrews 18, 5572 Catania, Interview Polyment of Sicona Polymetric of Simonda University Polymetric Sicona Simon Polymetric Vis Andrews 18, 5572 Catania, Interview Polymetric Vis Monteview Polymetric Visiona Catality Polymetric Visiona Catality Polymetric Vision (Sacas Visiona) Watersheiger visionger, Ordenate Image: Response National Visional Catality Polymetric Visional Polymetric Visiona Visional Visi
Eur J Clin Microbiol Infect Dis DOI 10.1007/s10096-016-2581-4 ORIGINAL ARTICLE	0	CossMark		ORIGINAL RESEARCH published 30/January 2010 avid 10.72000/enters 2010 2010	Lor	ong-Term Transcriptomic Signatures and Adaptations related to Daptomycin- MOA maintained after DAP-resistance onset in DAP ^R MRSA
In vivo development of daptomycin resis in vancomycin-susceptible methicillin-re <i>aureus</i> severe infections previously treat A. Capone ¹ · V. Cafiso ² · F. Campanile ² · G. Parisi ³ · B. Mariani ³ · N. Petrosillo ¹ · S. Stefani ²	stance esistant <i>Staphylococcus</i> red with glycopeptides		Colistin Resistant A. baun Genomic and Transcripto Acquired Under Colistin T Wara Caflor ¹¹ , Stefano Stracquadanio ¹ , Flavia Lo Verde ¹ , Maria Line Mezzlest ¹ a ¹ , Caria Calo ¹ , Giusoppo Pigula ¹ , Afre Stefana Böhen, Usevay o Chanc, Calmo, Bai	Diacoma Gabriele ¹ , do Forro ⁵ and energy ender of Chical and	Vivia Gabr ^a Dep ^b Dep * Cor Keyw	viana Cafiso ^{3*} , Stefano Stracquadanio ^a , Flavia Lo Verde ^a , Irene De Guidi ^a , Giacoma briele ^a , Giuseppe Pigola ^b , Stefania Stefani ^a epartment of Biomedical and Biotechnological Sciences, University of Catania, Italy epartment of Clinical and Experimental Medicine, University of Catania, Italy corresponding author e-mail: v.cafiso@unict.it ywords: S.aureus, DAP ^R MRSA, Transcriptomics, RNA-seq, real time qPCR Under revision in Scientific Report (Nature)
The understanding mechanisms is a very	of Daptomy y important c	/cin and hallenge t	Glycopeptide at to find new strat	as well egies to	as fa	s Colistin molecular resistance ace the ever-increasing spread of

these **resistances** in front of the **lack of new** therapeutic **options**.

Clinical description

- Patient 1: underwent a pulmonary lobectomy caused by a respiratory distress
- Patient 2 was a severely burned patient that had a cardiac arrest.
- Both patients were initially infected with COL- S *Ab*, consequently treated with colistin, and then infected with the COL-R *Ab*.
- The interval between the isolation of the COL-S and the COL-R *Ab* strain was 24 days for Patient 1 and 7 days for Patient 2.
- No reversion of colistin resistance upon colistin withdrawal was observed in both patients.

Colistin^{R/S} Acinetobacter baumannii (Ab)

Mechanisms of Colistin Resistance in A.baumannii

In A.baumannii two colistin resistance mechanisms have been proposed:

- i) The first involving mutations in the PmrAB two-component regulatory system, leading to lipid A modification (Adams et al., 2009, Arroyo et al., 2011 and Beceiro et al., 2011).
- ii) The second evoking mutations or disruption of the genes encoding lipid A biosynthesis such as *lpxA*, *lpxC*, and *lpxD*, determinig a complete loss of LPS (Moffat et al., 2010 and Moffat et al., 2011).

Molecular and Genomic Characterization

The molecular characterization of our isolates showed that **all strains belonged to PFGE-A, ST-281, OXA-23 producers**, **global clone II**, and were resistant to imipenem, meropenem, ampicillin/sulbactam, ciprofloxacin, gentamicin, amikacin, trimethoprim/sulfamethoxazole, and susceptible to tigecycline.

STRAIN	OU MLST	PI MLST	PFGE	GC		MICs (mg/L)							
					COL	IPM	MEM	SAM	СІР	GEN	AK	TGC	SXT
1-S	281	2	А	П	0.125	16*	16 [*]	>256 [*]	>32*	8*	128 [*]	2	8*
1-R	281	187	А	П	64*	16*	16 [*]	>256 [*]	>32*	16*	128 [*]	2	8*
2-S	281	2	А	П	0.125	16*	16 [*]	>256*	>32*	8*	64*	2	16*
2-R	281	2	А	П	256 [*]	16*	16 [*]	>256 [*]	>32*	8*	32*	2	16 [*]
				\		/							

Fitness experiments in CoIR/S *A.baumannii*

Growth Curves

Showed values are the means of three replicates.

1-S, 2-S COL-S XDR A. baumannii

1-R, 2-R COL-R XDR A. baumannii

ATCC 19606 antibiotic-susceptible A. baumannii

Cafiso V et al – Front Microbiol 2019; 9:3195

Surface attached polysaccharide (SP) (indirect) and LPS (direct) quantification

Strain	SP amount \pm SD (µg/mL)	LPS amount \pm SD (µg/mL)
1-S	144.84 ± 43.69	6298.40 ± 1267.04
1-R	71.770 ± 31.86	6002.95 ± 1178.74
2-S	178.38 ± 65.24	6003.80 ± 3717.05
2-R	124.54 ± 58.79	5184.77 ± 2526.66
COL-S A. baumannii ATCC 19606	170.69 ± 51.67	5843.86 ± 1102.01

1-S, 2-S COL-S XDR A. baumannii1-R, 2-R COL-R XDR A. baumanniiATCC 19606 antibiotic-susceptible A. baumannii

Cafiso et al. Colistin Resistant A. baumannii: Genomic and Transcriptomic Traits Acquired Under Colistin Therapy. *Front Microbiol.* 2019 Jan 7;9:3195. doi: 10.3389/fmicb.2018.03195. eCollection 2018.

Adaptive response in A h COI S/R pairs

Over-expressed transcripts	Functions upregulated	Associated phenotype
pgaB lipoprotein	Increase primary amine content; biofilm matrix production regulation	Biofilm production Increase Glucosamine acetylation
diacylglycerol kinase	Lipid recycling	Integrity of cell membrane, putatively acting as colidtin resistance
membrane non-ribosomal peptide synthetase	Siderophore production	Protection from ROS and oxidative stress
Lipid A phosphoethanol aminotransferase PmrC	LPS modification	Associated with COL R
Hypothetical protein 1	Periplasmatic membrane protein	?
Hypothetical protein 2	Was described in a n hypothetical phage protein; DNA damage response	Acquisition of resistance increase mutagenesis
Hypothetical protein 3	Photreceptor protein Light response	Motility, biofilm, susceptibility to tigecycline, minocycline?

Antimicrobial resistance
Pseudomonas aeruginosa
Combined resistance (at least three of piperac. and tazob., fluoroq., ceftaz., aminogl. and carbapenems)
Resistant (R) isolates proportion
2018
2018

P.aeruginosa: a flexible and opportunistic pathogen

- Naturally MDR: which explain its success in becoming one of the most important nosocomial pathogen
- Environmental isolates are commonly more susceptible than the HAI
- Since the 1980s the standard of care was Piperacillin or ceftazime plus an aminoglycoside
- Emergence of resistant organisms above all in intensive care, or chronic and persistence in vulnerable patient populations.
- Other strategies become necessary

Location	Resistance mechanisms	Targeted antibiotics	Type of resistance
Intrinsic (chromosomal)	AmpC-type cephalosporinase	β-lactams	Antibiotic inactivation
	Class D oxacillinase OXA-50	β-lactams	Antibiotic inactivation
	Aminoglycosides inactivating enzymes	Aminoglycosides	Antibiotic inactivation
	Efflux systems (overexpression)	Multiple antibiotic classes	Efflux systems
	Decreased membrane permeability	Multiple antibiotic classes	Membrane impermeability and purines
	DNA gyrase and topoisomerase IV	Fluoroquinolones	Target modification
	LPS modification	Colistin	Target modification
Imported (Mobile genetic elements)	Class A serine β -lactamases (PSE, CARB, TEM)	β-lactams	Antibiotic inactivation
	Class A serine ESBL (TEM, SHV, CTX-M, PER, VEB, GES, IBC)	β-lactams	Antibiotic inactivation
	Class D ESBL (OXA-types)	β-lactams	Antibiotic inactivation
	Class B Metallo-β-lactamase (IMP, VIM, SPM, GIM)	Carbapenems	Antibiotic inactivation
	Class A serine carbapenemase (KPC)	Carbapenems	Antibiotic inactivation
	Class D carbapenemase (OXA-types: OXA-40)	Carbapenems	Antibiotic inactivation
	Aminoglycosides inactivating enzymes	Aminoglycosides	Antibiotic inactivation
	Ribosomal methyltransferase enzymes	Aminoglycosides	Target modification

Table 1. Chromosomally encoded or imported resistance mechanisms of P. aeruginosa.

Table 4. New drugs and usual clinical dosage for new anti-Pseudomonas agents.

Drug	Current clinical indications	Usual clinical dosage for serious infections	Other comment
Cephalosporins			
Cefiderocol	Complicated UTI	2 g intravenous every 8 hours	-
Cephalosporin + β -lactamase inhibitor			
Ceftolozane-tazobactam	Complicated UTI and IAI	Loading dose 1.5 g or 3 g intravenous in 1 hour, followed by 1.5 g or 3 g intravenous every 8 hours	Extended infusion (over 3 h) 1.5 g or 3 g every 8 hours is recommended
Ceftazidime-avibactam	Complicated UTI and IAI, HAP and VAP and Gram- negative infections when other treatments might not work	Loading dose 2.5 g intravenous in 1 hour, followed by 2.5 g intravenous every 8 hours	Extended infusion (over 3 h) 2.5 g every 8 hours is recommended
Carbapenem + β-lactamase inhibitor			
Meropenem-vaborbactam	Complicated UTI	2 g/2 g intravenous every 8 hours	Not active against MDR strains
Imipenem-relebactam	Not yet approved by any regulatory authority	500 mg/250 mg intravenous every 6 hours	Not active against MDR strains
Aminoglycoside			
Plazomicin	Not yet approved by any regulatory authority	15 mg/kg every 24 hours	-

SCIENTIFIC REPORTS

natureresearch

Received: 29 January 2019 Accepted: 25 July 2019 Published online: 21 August 2019

OPEN Human metallo- β -lactamase enzymes degrade penicillin

Seydina M. Diene^{1,3}, Lucile Pinault², Vivek Keshri^{1,3}, Nicholas Armstrong², Saber Khelaifia^{1,3}, Eric Chabrière¹, Gustavo Caetano-Anolles⁴, Philippe Colson ^{1,2,3}, Bernard La Scola^{1,2,3}, Jean-Marc Rolain^{1,2,3}, Pierre Pontarotti ^{1,3,4,5} & Didier Raoult^{1,2,3}

Nonribosomal peptides are assemblages, including antibiotics, of canonical amino acids and other molecules. β -lactam antibiotics act on bacterial cell walls and can be cleaved by β -lactamases. β -lactamase activity in humans has been neglected, even though eighteen enzymes have already been annotated such in human genome. Their hydrolysis activities on antibiotics have not been previously investigated. Here, we report that human cells were able to digest penicillin and this activity was inhibited by β -lactamase inhibitor, i.e. sulbactam. Penicillin degradation in human cells was microbiologically demonstrated on *Pneumococcus*. We expressed a MBLAC2 human β -lactamase, known as an exosome biogenesis enzyme. It cleaved penicillin and was inhibited by sulbactam. Finally, β-lactamases are widely distributed, archaic, and have wide spectrum, including digesting anticancer and β -lactams, that can be then used as nutriments. The evidence of the other MBLAC2 role as a bona fide β -lactamase allows for reassessment of β -lactams and β -lactamases role in humans.

There is no conclusion on this topic.....only thoughts and ideas to change future behavior

- Resistance is ineluctable, being intrinsic in the microrganism's style of life
- Antibiotics act as selectors of gene/clone expansion
- Resistance is not only due to a gene acquisition and mutation of specific targets but also as a consequence of a global regulation/induction of general networks of the cells into selected environments (biofilm, chronicity, drug under-exposition etc)
- Antibiotics are extremely important but must be used under strict control and stewardship programs
- Stopping transmission and igiene
- Surveillances, detection of resistance mechanisms, rapid diagnostics and high throughput methods are indispensable tools for understanding future scenario