

Metodologie molecolari per la identificazione dei batteri multiresistenti

U.O. MICROBIOLOGIA Pievesestina Vittorio Sambri, MD, PhD Unit of Microbiology the Greater Romagna Area Hub Laboratory DIMES – University of Bologna

Pievesestina, Cesena (Italy) <u>Vittorio.sambri@auslromagna.it – vittorio.sambri@unibo.it</u>

A "syndromic" approach

- Classic Microbiology
 - Culture based
 - Phenotypic ID
 - Phenotypic AST
 - Immunocomplex ID
 - Immune response detection
 - <u>Time is an issue</u>
 - First come First got

- Molecular Microbiology
 - Specific gene(s) ID
 - Growth is not necessary (*sometime!*)
 - Multiple techniques
 - Very low LOD
 - Fast and quick
 - More germs "who is the bad guy"

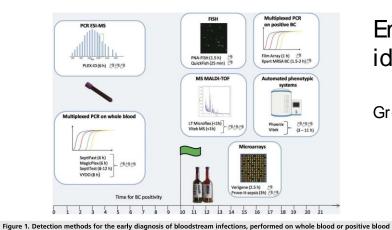
Antibiogramma Molecolare

- Determina la presenza di geni di resistenza
 - Non serve il batterio vitale
 - Bassi LOD (dipendente da numero di target e da reazione)
 - Non influenzato da on going therapy
 - TAT molto rapido
 - Determina ciò che "noi vogliamo, non quello che c'è"
 - Singolo target
 - Pannelli (quanto completi)
 - Sensibilità della reazione
 - Mutazioni

Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia – an observational pilot study in critical ill patients

Table 1 Pathogens detected by the mPCR device (according to the manufacturer)

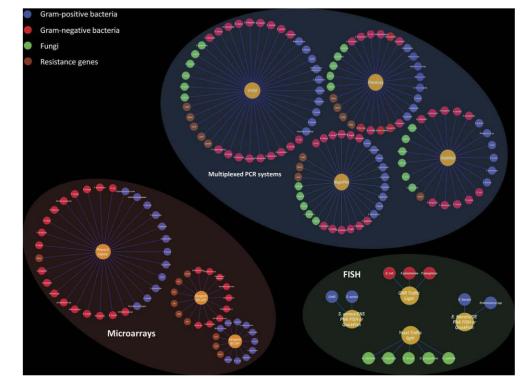
Gram-positive	Gram-negative	Fungal pathogens	mecA	Oxaci l lin,
Streptoccocus	Pseudomonas aeruginosa	Pneumocystis	msrA	Macrolid
pneumoniae	r seudomonus deruginosa	jirovecii	mefA/E	Macrolid
Staphylococcus aureus	Acinetobacter baumanii		ermA	Macrolid
	Legionella pneumophilia		ermB	Macrolid
	J , ,		ermC	Macrolid
	Moraxella catarrhalis		tem	Penicillin
	Stenotrophomonas maltophilia		shv	Penicillin
	Enterobacter species		ctx-M	Penicillin
	Escherichia coli		dha	3rd Gen.
	Klebsiella pneumoniae		ebc	3rd Gen.
	Klebsiella oxytoca		oxa51 like	Carbape
	Proteus species		kpc	Carbape
	Serratia marcescens		int1	Multidru
			su 1	Multidru
	Morganella morganii		gyrA83	Fluoroqu
	Haemophilus influenzae		gyrA87	Fluoroqu
	Chlamydophila pneumoniae		parC	Fluoroqu
	Chlamydophila pneumoniae		57	


Table 2 Resistance markers detected by the mPCR device (according to the manufacturer)

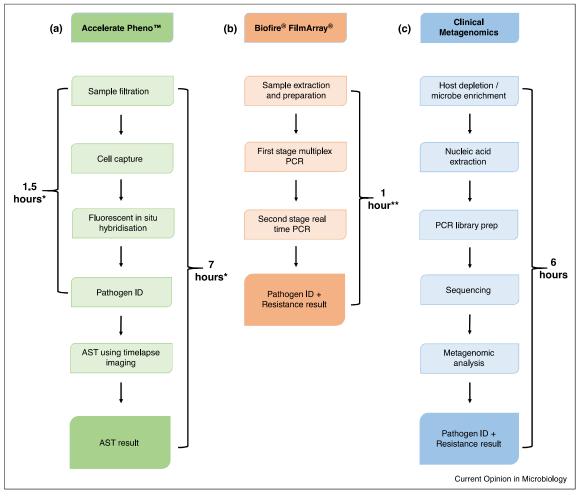
Resistance marker	Resistance against	Relevant pathogen group ^a
mecA	Oxaci l in, Methicillin	Staphylococcus species
msrA	Macrolides	Staphylococcus species
mefA/E	Macrolides	Streptococcus species
ermA	Macrolides / Lincosamides	Staphylococcus species
ermB	Macrolides / Lincosamides	Streptococcus species
ermC	Macrolide / Lincosamides	Staphylococcus species
tem	Penicillins, 3rd Gen. Cephalosporins	Enterobacteriaceae, Non-fermenting bacteria, Haemophilus influenzae
shv	Penicillins, 3rd Gen. Cephalosporin	Enterobacteriaceae, Non-fermenting bacteria
ctx-M	Penicillins, 3rd Gen. Cephalosporins	Enterobacteriaceae, Non-fermenting bacteria
dha	3rd Gen. Cephalosporins	Enterobacteriaceae
ebc	3rd Gen. Cephalosporins	Enterobacteriaceae
oxa51 like	Carbapenems	Acinetobacter baumanii
kpc	Carbapenems	Enterobacteriaceae, Non-fermenting bacteria
int1	Multidrug resistance	Enterobacteriaceae, Non-fermenting bacteria
su l 1	Multidrug resistance, Sulfonamides	Enterobacteriaceae, Non-fermenting bacteria
gyrA83	Fluoroquinolones	Escherichia coli, Pseudomonas aeruginosa
gyrA87	Fluoroquinolones	Escherichia coli, Pseudomonas aeruginosa
parC	Fluoroquinolones	Pseudomonas aeruginosa

Kunze et al. Annals of Clinical Microbiology and Antimicrobials (2015) 14:33 DOI 10.1186/s12941-015-0091-3

vittorio sambri CUEB 27 novembre 2019 pcr mdr


04/12/2019

culture. Number of hands represent the hands-on time (one : <10 minutes; two: 10-30 minutes; three: >30 minutes).


Emerging methodologies for pathogen identification in positive blood culture testing

Grégory Dubourg & Didier Raoult

Expert Review of Molecular Diagnostics

Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance Alexander J Trotter^{1,2}, Alp Aydin^{1,2}, Michael J Strinden^{1,2} and Justin O'Grady^{1,2}

Current Opinion in Microbiology 2019, 51:39-45

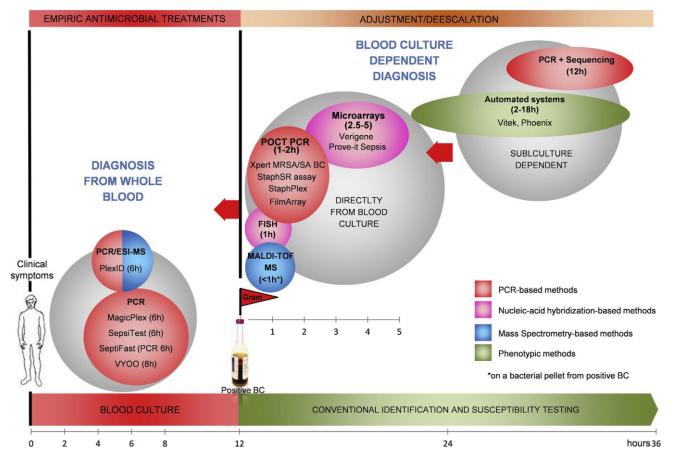
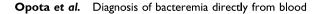



FIG. 2. Nucleic acid methods for the microbial diagnosis of BSI, BC-independent and BC-dependent methods. Nucleic acid-based methods have shortened the time to result BSI diagnosis. In the absence of microbial documentation of the etiologic agent of the BSI, anti-infectious treatments are initiated on the basis of clinical and epidemiologic information. Diagnosis directly from blood samples could shorten the length of empiric treatment.

	1d ago
KPC	Not Applicable
necA	Not Detected
/anA/B	Not Applicable
Enterococcus genus	Not Detected
isteria	Not Detected
nonocytogenes	
Staphylococcus genus	DETECTED
	on of Staphylococcus genus but not S. aureus is interpreted as gulase negative Staphylococcus sp.
Staphylococcus	Not Detected
Streptococcus genus	Not Detected
Streptococcus agalactiae	Not Detected
Streptococcus pneumoniae	Not Detected
Streptococcus pyogenes	Not Detected
Acinetobacter baumannii	Not Detected
Enterobacteriaceae amily	Not Detected
Enterobacter cloacae complex	Not Detected
Escherichia coli	Not Detected
Klebsiella oxytoca	Not Detected
Klebsiella oneumoniae	Not Detected
Proteus	Not Detected
Serratia marcescens	Not Detected
łaemophilus nfluenzae	Not Detected
Neisseria meningitidis	Not Detected
^o seudomonas aeruginosa	Not Detected
Candida albicans	Not Detected
Candida glabrata	Not Detected
Candida krusei	Not Detected
Candida parapsilosis	Not Detected
Candida tropicalis	Not Detected

Assessment of Rapid-Blood-Culture-Identification Result Interpretation and Antibiotic Prescribing Practices

Linsey M. Donner,^a W. Scott Campbell,^b Elizabeth Lyden,^c Trevor C. Van Schooneveld^d

FIG 2 Example of rapid blood culture pathogen identification (BCID) results within patient's electronic health record.

May 2017 Volume 55 Issue 5

Journal of Clinical Microbiology

Table 3. P1 blood culture episodes where FA-BCID test results enabled a treatment modification.

	FA-BCID test result	Routine ID result	Treatmer	Treatment switch initiated by FA-BCID test result				
			type	antibiotic	TAT OAT			
1	mecA-neg S. aureus	S. aureus	de-escalation	flucloxacillin	01:10			
2	S. pneumoniae	S. pneumoniae	initiation	penicillin	01:44			
3	bla _{KPC} -neg E. cloacae complex	E. cloacae complex	broadening	ciprofloxacin	01:53			
4	mecA-neg S. aureus	S. aureus	initiation	flucloxacillin	02:07			
5	mecA-pos S. haemolyticus	S. haemolyticus	initiation	vancomycin	02:23			
6	vanA/B-neg Enterococcus	E. faecalis	initiation	ampicillin	02:26			
7	bla _{KPC} -neg S. marcescens	S. marcescens	initiation	temocillin	02:34			
8	S. pneumoniae	S. pneumoniae	initiation	penicillin	02:46			
9	mecA-neg S. aureus	S. aureus	initiation	flucloxacillin	03:03			
10	mecA-neg S. aureus	S. aureus	initiation	flucloxacillin	03:37			
11	bla _{KPC} -neg E. coli	E. coli	initiation	cefuroxime	03:42			
12	mecA-pos S. aureus	S. aureus	broadening	vancomycin	03:47			
13	C. albicans	C. albicans	initiation	fluconazole	03:50			
14	mecA-pos S. aureus	S. aureus	initiation	vancomycin	03:57			
15	Streptococcus	S. milleri group	de-escalation	ampicillin	04:25			
16	S. thermophilus	S. viridans	initiation	ampicillin	04:33			
17	mecA-neg S. aureus	S. aureus	de-escalation	flucloxacillin	05:27			
18	mecA-neg S. aureus	S. aureus	de-escalation	flucloxacillin	06:33			
19	mecA-neg S. aureus	S. aureus	initiation	flucloxacillin	06:40			
20	bla _{KPC} -neg P. aeruginosa	P. aeruginosa	broadening	ceftazidime	06:50			
21	mecA-neg S. aureus	S. aureus	initiation	flucloxacillin	07:13			
22	C. glabrata	C. glabrata	broadening	anidulafungin	08:00			
23	mecA-neg S. aureus	S. aureus	de-escalation	flucloxacillin	11:04			
24	bla _{KPC} -neg E. coli	E. coli	de-escalation	cefuroxime	11:40			
25	bla _{KPC} -neg S. marcescens	S. marcescens	initiation	piperacillin + tazobactam	13:29			
26	L. monocytogenes	L. monocytogenes	de-escalation	ampicillin	15:52			
27	C. glabrata + mecA-neg S. aureus	C. glabrata	initiation	anidulafungin + flucloxacillin	15:53			
28	bla _{KPC} -neg E. cloacae complex	E. cloacae complex	initiation	temocillin	26:17			
29	bla _{KPC} -neg E. coli	E. coli	initiation	ceftriaxone	30:30			
30	bla _{KPC} -neg E. coli	E. coli	initiation	cefuroxime	33:55			
31	bla _{KPC} -neg E. coli + vanA/B-neg Enterococcus	E. coli + E. faecalis	initiation	cefuroxime + vancoymcin	34:33			
32	bla _{KPC} -neg E. coli	E. coli + C. perfringens	initiation	cefuroxime	37:30			
33	mecA-neg Staphylococcus + vanA/B-neg Enterococcus	S. epidermidis + E. faecalis	broadening	vancomycin	40:12			
34	bla _{KPC} -neg P. aeruginosa	P. aeruginosa	broadening	ceftazidime	65:30			
35	bla _{KPC} -neg A. baumannii + mecA-neg Staphylococcus	A. baumannii + S. haemolyticus	broadening	meropenem	108:48			

RESEARCH ARTICLE

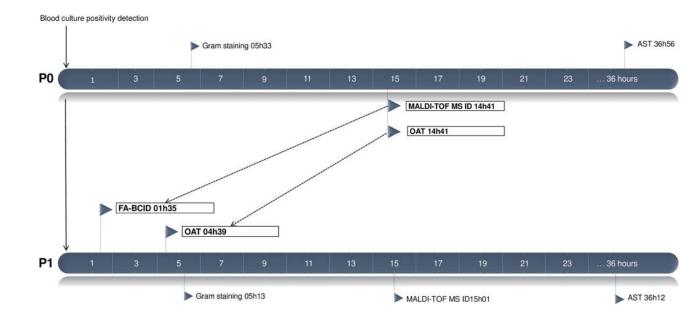
The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: A pre-post intervention study

Alexia Verroken¹*, Noémie Despas¹, Hector Rodriguez-Villalobos¹, Pierre-François Laterre²

1 Department of Microbiology, Cliniques Universitaires Saint-Luc – Université Catholique de Louvain, Brussels, Belgium, 2 Intensive Care Department, Cliniques Universitaires Saint-Luc – Université Catholique de Louvain, Brussels, Belgium

In episode 1–26, the modified treatment upon FA-BCID result was the OAT. In episode 27–35, further tailoring was necessary following ID and AST results. The TAT to OAT is reported in hours:minutes.

Abbreviations: AST, antimicrobial susceptibility testing; FA-BCID, FilmArray blood culture identification; ID, identification; OAT, optimal antimicrobial treatment; TAT, turn-around-time; P1, intervention period.


https://doi.org/10.1371/journal.pone.0223122.t003

RESEARCH ARTICLE

The impact of a rapid molecular identification test on positive blood cultures from critically ill with bacteremia: A pre-post intervention study

Alexia Verroken^{1*}, Noémie Despas¹, Hector Rodriguez-Villalobos¹, Pierre-François Laterre²

1 Department of Microbiology, Cliniques Universitaires Saint-Luc – Université Catholique de Louvain, Brussels, Belgium, 2 Intensive Care Department, Cliniques Universitaires Saint-Luc – Université Catholique de Louvain, Brussels, Belgium

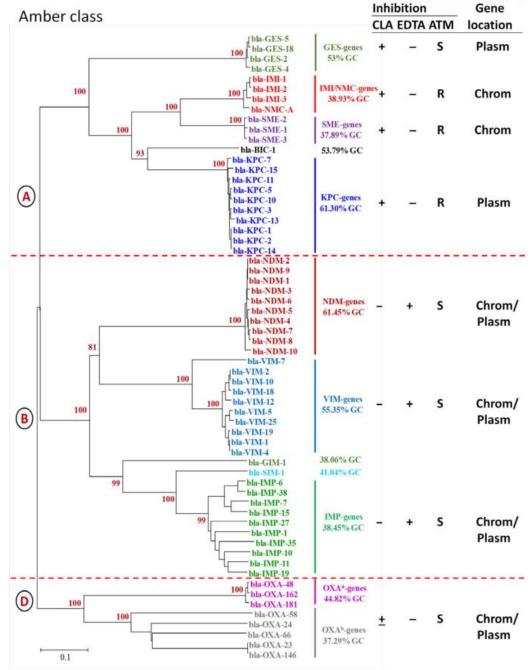
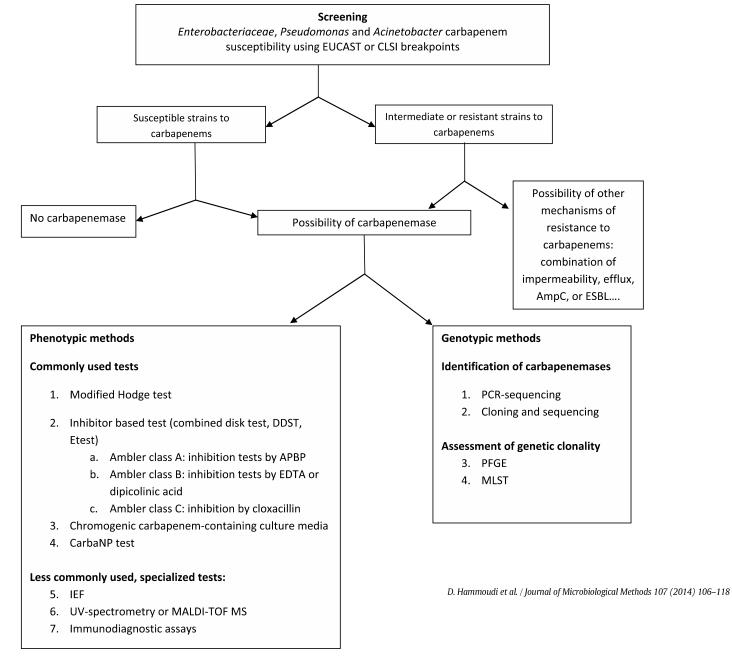


Fig 2. Comparison of median time to microbiological results and time to administration of optimal antimicrobial treatment in critically ill with bloodstream infections included in P0 and P1. Abbreviations: AST, antimicrobial susceptibility testing; FA-BCID, FilmArray blood culture identification; ID, identification; MALDI-TOF MS, matrix-assisted laser desorption ionization time-of-flight; OAT, administration of the optimal antimicrobial treatment; P0, pre-intervention period; P1, intervention period.

https://doi.org/10.1371/journal.pone.0223122.g002


Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species

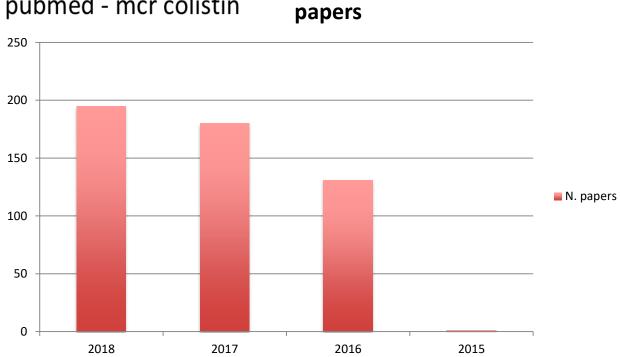
S. M. Diene and J.-M. Rolain Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France

vittorio sambri CUEB 27 novembre 2019

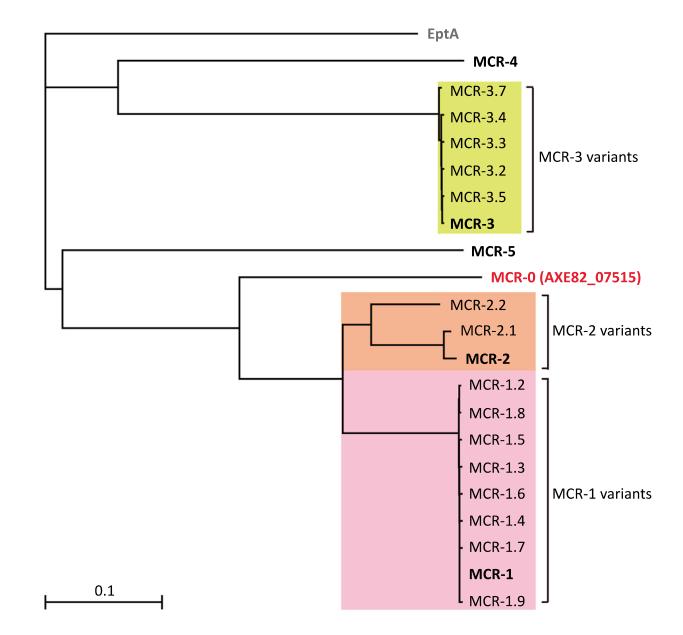
pcr mdr

Rapid molecular tests for detection of antimicrobial resistance determinants in Gramnegative organisms from positive blood cultures: a systematic review and meta-analysis[◊]
 G. De Angelis¹, A. Grossi², G. Menchinelli¹, S. Boccia^{2,3}, M. Sanguinetti^{1,4,*}, B. Posteraro^{5,6}

Study eligibility criteria: Clinical studies evaluating the performance of two major commercial systems, namely the Verigeneâ and FilmArrayâ systems, for rapid testing of GNB-PBCs, in comparison with the phenotypic or genotypic methods performed on GNB-PBC isolates.


Results: Twenty studies were identified (3310 isolates) from 2006 to 2019. Nine studies were conducted in East Asia. In 15 studies using phenotypic comparators (1930 isolates), 1014 (52.5%) isolates were *Escherichia coli*, and 287 (14.9%) of all the isolates displayed AMR phenotypes. In 5 studies using genotypic comparators (1380 isolates), 585 (42.4%) were *E. coli*, and 100 (7.2%) of all the isolates displayed AMR genotypes. Pooled sensitivity and specificity estimates for detection of AMR determinants by the Verigeneâ (i.e. CTX-M, IMP, KPC, NDM, OXA and VIM) and/or FilmArrayâ (i.e. KPC) systems were 85.3% (95% CI 79.9%–89.4%) and 99.1% (95% CI 98.2%–99.5%), respectively, across the 15 studies, and 95.5% (95% CI 89.2%–98.2%) and 99.7% (95% CI 99.1%–99.9%), respectively, across the 5 studies.

 Rapid molecular tests for detection of antimicrobial resistance determinants in Gram


 negative organisms from positive blood cultures: a systematic review and meta-analysis^o
 Clinical Microbiology and Infection

 G. De Angelis¹, A. Grossi², G. Menchinelli¹, S. Boccia^{2,3}, M. Sanguinetti^{1,4,*}, B. Posteraro^{5,6}

Conclusions: Our findings show that the Verigeneâ and FilmArrayâ systems may be a valid adjunct to the conventional microbiology (phenotypic or genotypic) methods used to identify AMR in GNBs. FilmArrayâ system detects only one AMR genotype, namely KPC, limiting its utilization. Verigeneâ Both and FilmArrayâ systems miss important can cephalosporin/carbapenem resistance phenotypes in a minority of cases. However, sensitivity and specificity of both systems render them valuable clinical tools in timely identification of resistant isolates. Further studies will establish the prominence of such rapid diagnostics as standard of care in patients with bloodstream infections.

pubmed - mcr colistin

vittorio sambri CUEB 27 novembre 2019 pcr mdr

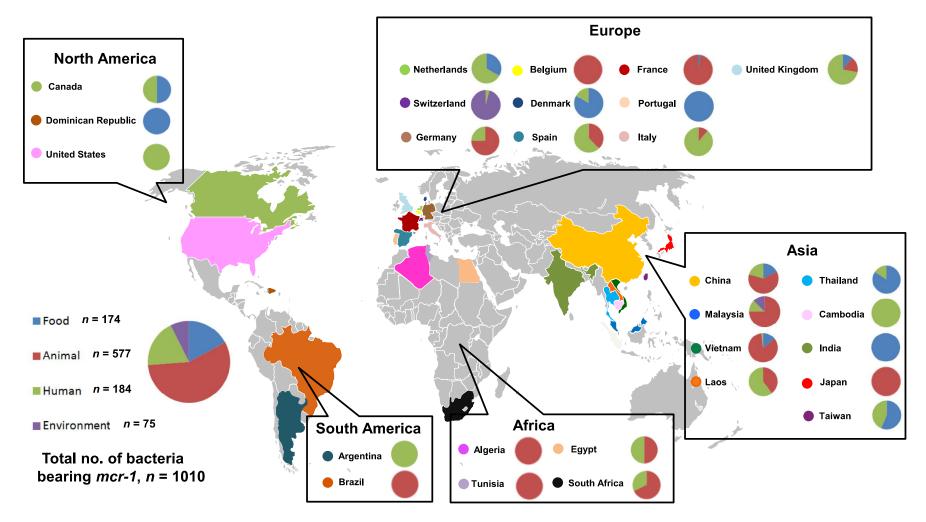


Fig. 2. Global distribution of plasmid-mediated mcr-1 colistin-resistant strains isolated from environments, foods, animals and humans (November 2015 to April 2016).

Microbiological surveillance of plasmid mediated colistin resistance in human *Enterobacteriaceae* isolates in Romagna (Northern Italy): August 2016–July 2017

F. Del Bianco^{a,*}, M. Morotti^a, M.F. Pedna^a, P. Farabegoli^a, V. Sambri^{a,b}

Results: Over the total of 19053 isolates belonging to *Enterobacteriaceae*, 90 were colistin resistant. The presence of *mcr-1* was detected in 26 *Escherichia coli*. The overall prevalence of *mcr-1* was 0.14%. The *mcr-1* positive *E. coli* strains were assigned to 13 distinct sequence types (STs) according to MLST.

Strain	Isolation	Source	MLST ^a	MIC n	ng/L (S/I/R) ^b											
				AMK	AMX/CLAV	CTX	CFT	FEP	IMI	MEM	PIP/TZB	CIP	GEN	SXT	TGC	COL
10/RA	Aug 2016	urine	ST617	$\leq 2S$	$\leq 2S$	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	\leq 0.25 S	\leq 0.25 S	$\leq 4 \text{S}$	\leq 0.25 S	$\leq 1 \text{ S}$	$\leq 20 \text{S}$	\leq 0.5 S	8 R
2I/RN	Aug 2016	urine	ST744	$\leq 2S$	8 S	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 0.25 \text{S}$	\leq 0.25 S	8 S	$\geq 4 \text{R}$	$\leq 1 \text{ S}$	\geq 320 R	$\leq 0.5 \text{S}$	8 R
$30/RA ES\beta L+^{c}$	Sept 2016	urine	ST73	$\leq 2 S$	16 R	2 I	16 R	2 I	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	$\geq 4 R$	$\geq \! 16 R$	$\leq 20 \text{S}$	\leq 0.5 S	8 R
40/RA	Sept 2016	urine	ST410	$\leq 2 S$	\geq 32 R	$\leq \! 1 S$	$\leq \! 1 S$	$\leq \! 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4 \text{S}$	$\geq 4 R$	$\leq 1 \text{ S}$	\geq 320 R	\leq 0.5 S	4 R
5I/RA	Sept 2016	blood	ST624	$\leq 2 S$	\geq 32 R	$\leq 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	64 R	$\geq 4 R$	2 S	\geq 320 R	\leq 0.5 S	8 R
6I/RN	Sept 2016	urine	ST224	$\leq 2 S$	16 R	$\leq \! 1 S$	$\leq 1 S$	$\leq \! 1 S$	$\leq \! 0.25 \text{S}$	\leq 0.25 S	$\leq 4S$	$\geq 4 R$	$\leq 1 \text{S}$	\geq 320 R	1 S	8 R
7I/RN	Sept 2016	urine	ST69	$\leq 2 S$	$\leq 2 S$	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq \! 1 S$	$\leq \! 0.25 \text{S}$	\leq 0.25 S	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
8I/CE	Sept 2016	urine	ST69	4 S	16 R	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	$\leq 1 \text{ S}$	$\leq 0.25 \text{S}$	$\leq 0.25\text{S}$	$\leq 4S$	$\geq 4 \text{R}$	$\geq \! 16 R$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
90/RA	Sept 2016	urine	ST457	$\leq 2 S$	4 S	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	$\leq 1 \text{S}$	$\leq 0.25 \text{S}$	$\leq 0.25\text{S}$	$\leq 4 \text{S}$	2 R	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
100/FO	Sept 2016	urine	ST10	$\leq 2 S$	4 S	$\leq \! 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4 \text{S}$	$\geq 4 \text{R}$	$\geq\!16~R$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
110/RA	Sept 2016	wounde	ST354	$\leq 2 S$	8 S	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 0.25 \text{S}$	\leq 0.25 S	$\leq 4 \text{S}$	$\geq 4 \text{R}$	$\geq 16 \text{R}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
120/RA	Sept 2016	urine	ST10	$\leq 2 S$	4 S	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	$\geq 4 \text{R}$	$\geq \! 16 R$	\geq 320 R	\leq 0.5 S	8 R
13I/RN	Oct 2016	urine	ST224	$\leq 2 S$	16 R	$\leq \! 1 S$	$\leq \! 1 S$	$\leq \! 1 S$	\leq 0.25 S	\leq 0.25 S	16 I	$\geq 4 \text{R}$	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
140/RN	Oct 2016	urine	ST10	$\leq 2 S$	\geq 32 R	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	\leq 0.25 S	\leq 0.25 S	16 I	$\geq 4 \text{R}$	$\leq 1 \text{ S}$	\geq 320 R	\leq 0.5 S	4 R
150/FO	Nov 2016	urine	ST216	$\leq 2 S$	8 S	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	$\leq 1 \text{ S}$	$\leq \! 0.25 \text{S}$	$\leq \! 0.25 \text{S}$	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
160/RA	Nov 2016	urine	ST95	$\leq 2 S$	4 S	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{ S}$	$\leq \! 0.25 \text{S}$	$\leq \! 0.25 \text{S}$	$\leq 4S$	2 R	$\geq 16 \text{R}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
170/RA	Oct 2016	urine	ST744	$\leq 2 S$	$\leq 2 S$	$\leq 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	$\leq \! 0.25 \text{S}$	$\leq 4S$	$\leq \! 0.25 \text{S}$	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	4 R
18I/RN	Dec 2016	blood	ST10	$\leq 2 S$	16 R	$\leq 1 \text{ S}$	$\leq 1 \text{ S}$	$\leq 1 \text{ S}$	$\leq 0.25 \text{S}$	$\leq 0.25\text{S}$	$\leq 4S$	$\geq 4 \text{R}$	$\leq 1 \text{ S}$	\geq 320 R	$\leq \! 0.5 \text{S}$	8 R
190/CE <i>ES</i> βL+ ^{c,d}	Dec 2016	urine	ST131	$\leq 2 S$	4 S	8 R	$\leq 1 \text{ S}$	2 I	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{ S}$	\geq 320 R	$\leq 0.5 \text{S}$	8 R
200/RA	Jan 2017	urine	ST131	$\leq 2 S$	4 S	$\leq 1 \text{S}$	$\leq 1 \text{S}$	$\leq 1 \text{S}$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	1 I	$\leq 1 \text{ S}$	\geq 320 R	\leq 0.5 S	8 R
21I/RN	Feb 2017	urine	ST10	$\leq 2 S$	$\leq 2 S$	$\leq 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	$\geq 4 R$	$\leq 1 \text{ S}$	$\leq 20 \text{S}$	\leq 0.5 S	16 R
220/FO	Apr 2017	urine	ST131	$\leq 2 S$	$\leq 2 S$	$\leq \! 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	$\geq 4 R$	$\leq 1 \text{ S}$	\leq 20 S	\leq 0.5 S	8 R
230/RA	Apr 2017	urine	ST224	$\leq 2 S$	16 R	$\leq 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{S}$	\geq 320 R	\leq 0.5 S	4 R
24I/RA	May 2017	b.asp. ^e	ST10	$\leq 2 S$	8 S	$\leq 1 S$	$\leq 1 S$	$\leq 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{ S}$	\geq 320 R	\leq 0.5 S	4 R
25I/RA	June 2017	wounde	ST10	$\leq 2 S$	4 S	$\leq \! 1 S$	$\leq \! 1 S$	$\leq \! 1 S$	\leq 0.25 S	\leq 0.25 S	$\leq 4S$	\leq 0.25 S	$\leq 1 \text{S}$	\geq 320 R	\leq 0.5 S	4 R
260/RN	June 2017	urine	ST131	$\leq 2 S$	8 S	$\leq 1 S$	$\leq 1 \text{ S}$	$\leq 1 \text{S}$	$\leq 0.25\text{S}$	$\leq 0.25\text{S}$	$\leq 4S$	$\leq 0.25\text{S}$	$\leq 1 \text{ S}$	\geq 320 R	\leq 0.5 S	6 R

Methods: All the colistin resistant Enterobacteriaceae, isolated from August 1st 2016 to July 31st 2017,

International Journal of Infectious Diseases 69 (2018) 96–98

Detection of *mcr-4* positive *Salmonella enterica* serovar Typhimurium in clinical isolates of human origin, Italy, October to November 2016

Edoardo Carretto¹, Flavia Brovarone¹, Paola Nardini¹, Giuseppe Russello¹, Daniela Barbarini², Stefano Pongolini³, Carlo Gagliotti⁴, Alessandra Carattoli⁵, Mario Sarti⁶

In this study we report the detection of the recently described *mcr-4* gene in two human isolates of *Salmonella enterica* serovar Typhimurium. The strains were isolated from faecal samples of two Italian patients with gastroenteritis, collected in 2016. The identified *mcr-4* genes (variant *mcr-4.2*) differed from the *mcr-4* gene originally described in a *Salmonella* strain of swine origin from Italy. *Salmonella* species could represent a hidden reservoir for mcr genes.

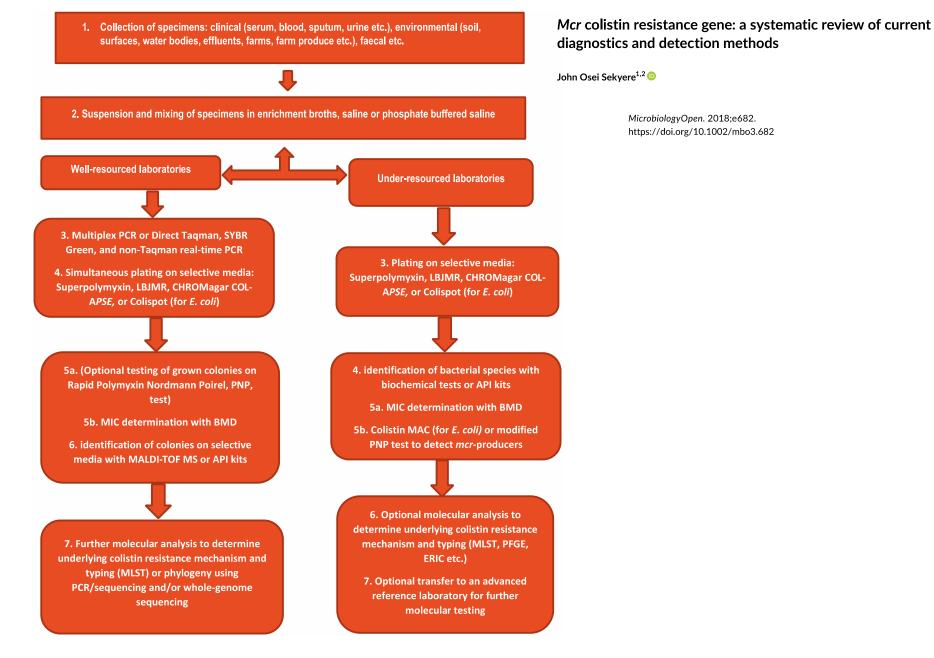
www.eurosurveillance.org

ARTICLE

Emerging Microbes & Infections www.nature.com/emi

Open Access

Emergence of a novel mobile colistin resistance gene, *mcr-8*, in NDM-producing *Klebsiella pneumoniae*


Xiaoming Wang¹, Yao Wang¹, Ying Zhou¹, Jiyun Li², Wenjuan Yin², Shaolin Wang¹, Suxia Zhang², Jianzhong Shen¹, Zhangqi Shen¹ and Yang Wang²

J Antimicrob Chemother 2018; **73**: 1791–1795 doi:10.1093/jac/dky111 Advance Access publication 17 April 2018 Journal of Antimicrobial Chemotherapy

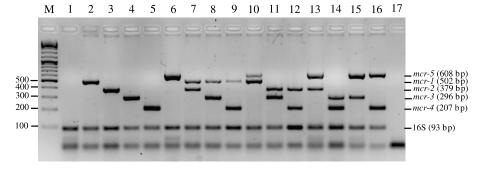
Novel plasmid-mediated colistin resistance gene *mcr-7.1* in *Klebsiella pneumoniae*

Yong-Qiang Yang^{1,2}, Yun-Xia Li^{1,2}, Chang-Wei Lei^{1,2}, An-Yun Zhang^{1,2} and Hong-Ning Wang^{1,2}*

vittorio sambri CUEB 27 novembre 2019 pcr mdr

vittorio sambri CUEB 27 novembre 2019 pcr mdr

04/12/2019


Rapid multiplex polymerase chain reaction for detection of *mcr-1* to *mcr-5* genes

Mathilde Lescat ^{a,b,c,d}, Laurent Poirel ^{a,b,e,*}, Patrice Nordmann ^{a,b,e,f}

M. Lescat et al. / Diagnostic Microbiology and Infectious Disease xxx (2018) xxx-xxx

MCR determinant	Amino acid identity level						
	MCR-1	MCR-2	MCR-3	MCR-4			
MCR-2	80.7						
MCR-3	32.5	31.7					
MCR-4	34.0	35.0	49.0				
MCR-5	36.1	35.3	34.7	33.7			

Table 1Amino acid identity of MCR polymyxin resistance determinants.

Fig. 1. Agarose gel electrophoresis (2.5%) used for the separation of multiplex PCR products. Lanes: 1, negative control (susceptible *E. coli* isolate); 2, *mcr*-1–positive isolate; 3, *mcr*-2–positive isolate; 4, *mcr*-3–positive isolate; 5, *mcr*-4–positive isolate; 6, *mcr*-5–positive isolate; 7, mix of DNA of *mcr*-1– and *mcr*-2–positive isolates; 8, mix of DNA of *mcr*-1 and *mcr*-3–positive isolates; 9, mix of DNA of *mcr*-1– and *mcr*-3–positive isolates; 9, mix of DNA of *mcr*-1– and *mcr*-3–positive isolates; 10, mix of DNA of *mcr*-2– and *mcr*-3–positive isolates; 11, mix of DNA of *mcr*-2– and *mcr*-3–positive isolates; 12, mix of DNA of *mcr*-3– and *mcr*-3–positive isolates; 13, mix of DNA of *mcr*-2– and *mcr*-3–positive isolates; 14, mix of DNA of *mcr*-3– and *mcr*-4–positive isolates; 15, mix of DNA of *mcr*-3– and *mcr*-5–positive isolates; and 17, negative control (water). M = molecular size marker (GeneRulerTM, 100-bp DNA Ladder Plus; Thermo Fisher Scientific, USA). The size of each PCR product is indicated in base pairs.

04/12/2019

vittorio sambri CUEB 27 novembre 2019 pcr mdr

Multisite Evaluation of Cepheid Xpert Carba-R Assay for Detection of Carbapenemase-Producing Organisms in Rectal Swabs

M. Tato,^a P. Ruiz-Garbajosa,^a M. Traczewski,^b A. Dodgson,^c A. McEwan,^c R. Humphries,^d J. Hindler,^d J. Veltman,^e H. Wang,^f R. Cantón^a

contrived specimens			
Xpert Carba-R assay result	Clinical specimens $(n = 383)$	Contrived specimens $(n = 250)$	All specimens $(n = 633)$
Positive (single and/or combined targets)	42	107	149
IMP-1	0	25	25
VIM	2	24	26
NDM	2	23	25
KPC	13	19	32
OXA-48	20	15	35
VIM + OXA-48	4	0	4
NDM + KPC	1	0	1
IMP-1 + NDM	0	1	1
Negative	341	143	484

TABLE 1 Xpert Carba-R assay results by target for clinical and
contrived specimens

TABLE 3 Overall Xpert Carba-R performance versus that of thereference method (culture plus sequencing) for combined clinical andcontrived specimens

TABLE 2 Results from the Xpert Carba-R assay and the reference method (culture plus sequencing) by individual target for combined clinical and contrived specimens

	Reference method (culture plus sequencing)						
Xpert Carba-R assay	No. positive	No. negative	Total No.				
Positive	142	7	149				
Negative	6	478	484				
Total	148	485	633				

Xpert Carba-R	Reference method (culture plus sequencing)							
assay	IMP-1	VIM	NDM	KPC	OXA-48	Negative	Total	
IMP-1	26	0	0	0	0	0	26	
VIM	0	29	0	0	0	1	30	
NDM	0	0	26	0	0	1	27	
КРС	0	0	0	29	0	4	33	
OXA-48	0	0	0	0	38	1	39	
Negative	1	2	0	1	2	3,004	3,010	
Total	27	31	26	30	40	3,011	3,165	

vittorio sambri CUEB 27 novembre 2019 pcr mdr

Evaluation of a Loop-Mediated Isothermal Amplification-Based Assay for the Rapid Detection of Plasmid-Encoded Colistin Resistance Gene *mcr-1* in *Enterobacteriaceae* Isolates

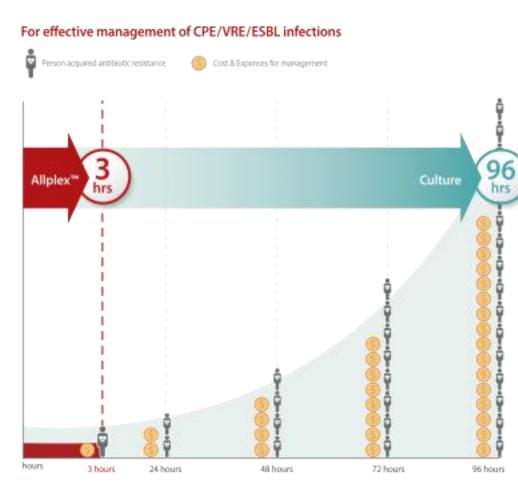
Can Imirzalioglu,^a Linda Falgenhauer,^a Judith Schmiedel,^a Said-Elias Waezsada,^a Konrad Gwozdzinski,^a Nicole Roschanski,^b Uwe Roesler,^b Lothar Kreienbrock,^c Arthur P. Schiffmann,^d [®] Alexandra Irrgang,^e Annemarie Käsbohrer,^{e,f} Rolf Bauerfeind,^g Eugen Domann,^a Trinad Chakraborty^a

April 2017 Volume 61 Issue 4 e02326-16

Antimicrobial Agents and Chemotherapy

Evaluation of the eazyplex[®] SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals

Sergio García-Fernández¹, María-Isabel Morosini^{1,2}*, Francesc Marco^{3,4}, Desirèe Gijón^{1,2}, Andrea Vergara^{3,4}, Jordi Vila^{3,4}, Patricia Ruiz-Garbajosa^{1,2} and Rafael Cantón^{1,2}


J Antimicrob Chemother 2015; **70**: 1047–1050

Allplex[™] Entero-DR Assay

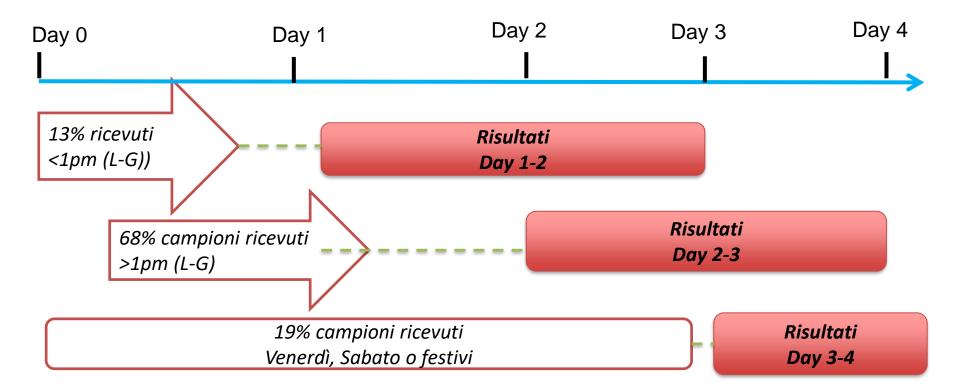
Compatible instrumentation (CE-IVD Marked)

- Automated Extraction & PCR Setup NIMBUS IVD (Hamilton) STARlet IVD (Hamilton)
- Automated Extraction NucliSENS[®] easyMAG[®] (BioMérieux)
- Real-time PCR CFX96™ (Bio-Rad)

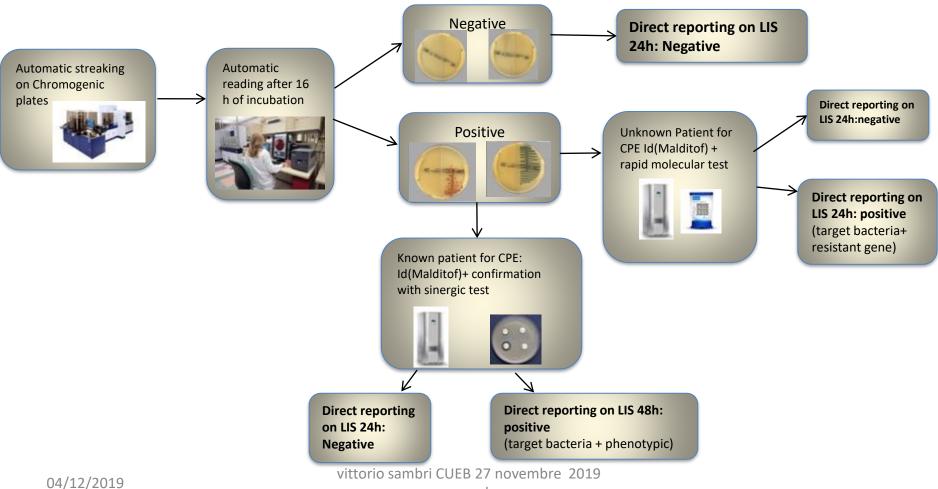
Allplex[™] Entero-DR Assay detects antibiotic resistance within 3hrs whereas conventional method requires maximum 96 hrs. Allplex[™] Entero-DR Assay significantly descreases the spread of antibiotic resistant bacteria.

Decrease

- Hygiene management costs and expenses
- Cases and outbreaks of infections
- Disability and mortality rates

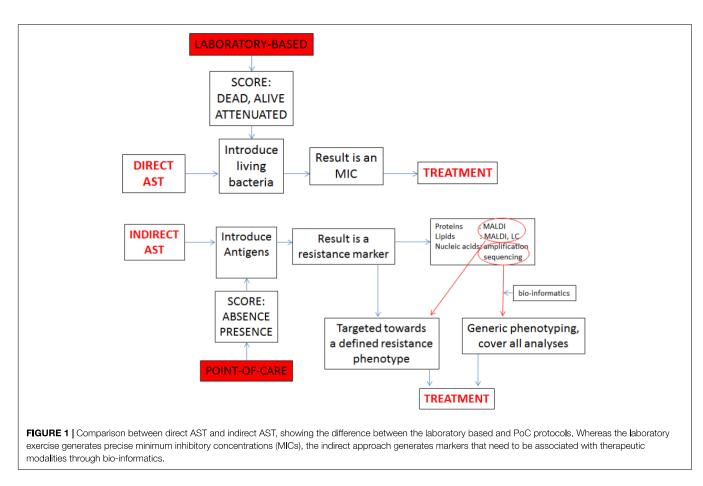

Increase

- · Efficient control of patients
- Appropriate treatments
- Efficient management of infections


vittorio sambri CUEB 27 novembre 2019 pcr mdr

Analisi dei Dati Maggio – Giugno 2015

- 84 campioni per 78 pazienti
- 60% dei risultati TAT >2 giorni


CPE Screening algorithm: from image analysis to sample reporting

pcr mdr

Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing

Alex van Belkum1* and Olivier Rochas2

MINI REVIEW published: 29 June 2018 doi: 10.3389/fmicb.2018.01437 TABLE 1 Global review of future and commercial PCR tests for meticillin-resistant and -susceptible strains of Staphylococcus aureus.

Company	Status	Concise product description	Duration of tes
Abacus Diagnostica, Finland	In development	Rapid DNA testing with proprietary GenomEra CDX-technology for identification of MRSA	50 min
AdvanDx, United States	FDA approved	Staphylococcus QuickFISH filter in situ hybridization test for positive blood culture liquid	20 min
Akonni Biosystems, Jnited States	In development	TruArray MRSA, qualitative test for detection of SA and MRSA	Non-specified
Atlas Genetics, United Kingdom	In development	Mixed technology linking NAT and immunology for MRSA, Dual MRSA/MSSA	0.5 h
Autoi/mmun Diagnostika, Germany	CE certified	Automated AID Scanner, line probe Western blot probe assay after PCR amplification, 100 strips per hour	4 h
Biocartis, Belgium	In development	ldylla platform for multiplex real-time PCR assay for rapid detection of bloodstream infections	2 h
BioFire, United States	FDA approved, new tests in development	FDA approved syndromic panels for respiratory, gastro-intestinal, and meningiis/encephalitis associated pathogens; the BCID test also covers <i>mecA</i> . Sample in —result out strategy	1 h
3D, United States	FDA approved, new tests in development	Platform BD Max. MRSA + MSSA + mecA test	<3 h
Cepheid, United States acquired by Danaher)	FDA approved for HAI with MRSA/SA	Validated for positive blood culture. Xpert test format. MRSA, SA Nasal Complete, MRSA/SA SSTI, MRSA/SA BC	2 h
Coyote Biosci, United States, China	In development	Platform Mini 8 RT PCR; throat swab/Blood sample—MRSA	10–30 min
Curetis AG, Germany	CE marked, precise status not very clear	Platform Univero; > 100 pathogens and resistance genes, P55 Application focuses on pneumonia, 21 pathogens, and 19 resistance markers, 40-plex. i60 ITI Application Cartridge (23 organisms and 19 resistance genes)	4–5 h
DXna, United States	CE marked	GeneSTAT portable RT PCR platform, MRSA/MRCoNS in development for 2017	1 h
Epoch Biosciences, Elitech Group	FDA approved	Triplex Real Time Amplification tests using minor groove binding DNA probes	1 h
Genesig	RUO	Quantitative PCR for various targets among which MRSA; 16 samples per run	90–120 min
GenMark, United States	In development	Platform ePlex. Electronic sensor technology, DNA hybridization, and electrochemical detection	4 h
Genspeed, Austria	In development	Straightforward PCR with hybridization confirmation, combination of microfluidics, miniaturized opto-electronics, and automation	100 min
GFC Diagnostics	In development	Microscreen enzymatic-colorigenic DNA hybridization test on Safetube device	Non-specified
Great Basin Scientific, Jnited States	Early stage	Whole blood, multiplexed nucleic-acid based assay using an opto-fluidic device; announced for 2021	Non-specified
Grenier Bio-One, United States	CE marked, not FDA cleared	PCR-based chip-probe Genspeed platform. Genspeed MRSA distinguishes MRSA/MRSE or mecA/C positive S. haemolyticus	1.5 h
Hain, Germany	CE marked for many tests	PCR/hybridization platform. GenoType, FluoroType and GenoQuick technologies, MRSA, CoNS	2.5 h
cubate, United States	RUO	Random access multiplex PCR disposable test cassette for pathogens and resistances. Portfolio: gram + MSSA, <i>S. epidermidis</i> , MRSA	Non-specified
D Biomedical, Corp., /ancouver	Early stage	Velogene rapid MRSA identification assay	2 h
inear Diagnostics, Ltd.	In development	Detection of aligned substrate or PCR fragment via polarized light	Non-specified
Magnomics, Portugal	In development	Chip DNA extraction, amplification, and magnetic detection. Primary for veterinary application	1 h
Mobidiag, Finland	CE marked	Novodiag and Amplidiag product line. Sepsis, 60 bacterial species, 13 fungi, and <i>mecA</i> in one assay	3.5 h
Nanosphere Inc, United States	FDA cleared	DNA amplification-hybridization. Verigene BC-GP and BC-GN. Gold Nanoparticle Technology with oligo-hybridization to target DNA, narrow temperature range	2–2.5 h

Laboratory-Based and Point-of-Care Testing for MSSA/MRSA Detection in the Age of Whole Genome Sequencing

Alex van Belkum1* and Olivier Rochas2

vittorio sambri CUEB 27 novembre 2019 pcr mdr

ORIGINAL ARTICLE

A 5-year study of the performance of the Verigene Gram-positive blood culture panel in a pediatric hospital

Chairut Vareechon¹ · Javier Mestas¹ · Claudia M. Polanco¹ · Jennifer Dien Bard^{1,2}

Abstract

High accuracy of direct from positive blood culture molecular panels is imperative, particularly for the detection of resistance determinants as it allows for antimicrobial optimization prior to conventional susceptibility testing. In this study, we provide extensive data since implementation of the Verigene Gram-positive blood culture panel (BC-GP) in 2013. Within 5 years, 1636 blood culture bottles positive for a Gram-positive organism were tested on the BC-GP panel. The BC-GP panel identified 1520 Gram-positive organisms in 1636 (92.9%) blood cultures tested. For positive blood cultures, we observed 96.4% (806/834) concordance to the species level. Compared with conventional antimicrobial susceptibility testing, the positive percent agreement (PPA) of methicillin-resistant SA (MRSA) (50) and methicillin-resistant SE (MRSE) (365) was 100%. The *mecA* gene was detected in two methicillin-susceptible *Staphylococcus aureus* (MSSA) and one methicillin-susceptible *S. epidermidis* (MSSE) with a negative percent agreement (NPA) of 99.1% (221/223) and 99.2% (120/121), respectively. The PPA and NPA for vancomycin-resistant *Enterococcus faecium* (VRE) was 100%. The BC-GP panel demonstrated excellent performance and clinicians can confidently de-escalate antimicrobial therapy in the absence of *mecA* and *vanA/B* gene.

Table 4Detection of resistancedeterminants using the BC-GPPanel

	Result values ^a				% (95% CI) for ^b	
Identification (resistance marker)	ТР	FP	TN	FN	PPA	NPA
Staphylococcus aureus (mecA)	50	2	221	0	100 (91–100)	99.1 (96–100)
Staphylococcus epidermidis (mecA)	365	1	120	0	100 (99–100)	99.2 (95–100)
Enterococcus faecium (vanA/vanB)	5	0	12	0	100.0 (46–100)	100.0 (70–100)
Enterococcus faecalis (vanA/vanB)	0	0	84	0	ND	100.0 (95–100)
Total	420	3	437	0	100 (99–100)	99.3 (98–100)

^a *TP*, true positive; *FP*, false positive; *TN*, true negative; *FN*, false negative

^b PPA, positive percent agreement; NPA, negative percent agreement; 95% CI, 95% confidence interval; ND, not detected

Comparison of four commercial screening assays for detection of blakpc, blaNDM, blaIMP, blaVIM and blaOXA48 from rectal secretion collected by swabs.

Francesca Del Bianco 1,*, Manuela Morotti 1, Silvia Zannoli 1, Giorgio Dirani 1, Michela Fantini 1, Maria F Pedna 1, Patrizia Farabegoli 1 and Vittorio Sambri 1.2

¹ Unit of Microbiology, The Great Romagna Hub Laboratory, 47822 Pievesestina (FC), Italy

² Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy

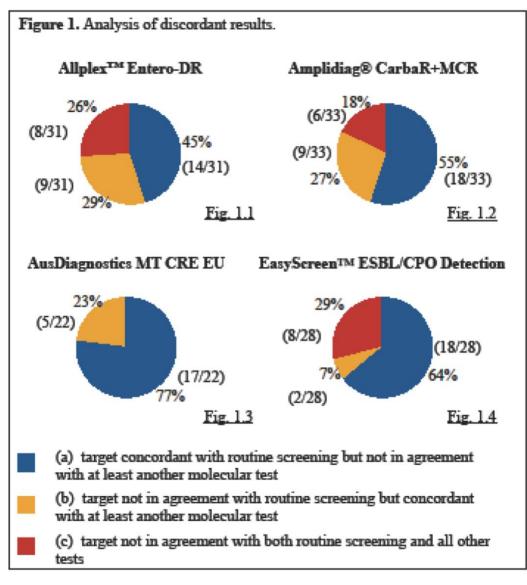
A total of 1015 non-duplicated rectal swab specimens were prospectively collected using ESwab[™] (COPAN Italia S.p.A., Brescia, Italy). The samples were transported to the Laboratory upon collection. processed within 24 hours and reported in 48 hours.

Assay		Routine screening tests			
	Assay results	Positive	Negative	Total	
Allplex	Positive	25	17	42	
Entero-DR assay	Negative	0	940	940	
	Total	25	957	982	
	Invalid			2	
Amplidiag CARBAR+MCR kit	Positive	20	11 ª	31 ª	
	Negative	4	949	953	
	Total	24	959	983	
	Invalid			3	
AusDiagnostics	Positive	19	5	24	
MT CRE EU assay	Negative	0	810	810	
	Total	19	815	834	
	Invalid				
EasyScreen	Positive	22	5	27	
ESBL/CPO Detection Kit	Negative	0	751	751	
	Total	22	756	778	
	Invalid			4	

 Table 1. Detailed results of study specimens

^a A specimen was KPC positive for routine screening, while with Amplidiag kit resulted positive for KPC and VIM targets.

Assay	Sensitivity (%[95%CI])	Specificity (%[95%CI])	PPV (%[95%CI])	NPV (%[95%CI])	Overall % agreement (%[95%CI])	Kappa statistic
Allplex Entero-DR assay	100 (86.28- 100)	98.22 (97.17-98.96)	59.52 (47.86-70.20)	100	98,27 (97.24- 98.99)	0,74
Amplidiag CARBAR+MCR kit	83.33 (62.62-95.26)	98.85 (97.96-99.43)	64.52 (49.59-77.07)	99.58 (98.98-99.83)	98.48 (97.50-99.14)	0.72
AusDiagnostics MT CRE EU assay	100 (82.35-100)	99.39 (98.57-99.80)	79.17 (61.33-90.10)	100	99.40 (98.61- 99.81)	0.88
EasyScreen ESBL/CPO Detection Kit	100 (84.56-100)	99.34 (98.46-99.78)	81.48 (64.75-91.33)	100	99.36 (98.51-99.79)	0,89


 Table 2. Assay performance

	Allplex Entero-DR Assay	Amplidiag CARBAR+MCR kit	Ausdiagnostics MT CRE EU Assay	EasyScreen ESBL/CPO Detection Kit
Sample throughput	up to 94 tests/ batch	up to 64 tests/ batch	24 up to 64 tests/ batch	up to 80 tests / batch
Hands on time	45min	1h	20 min. ª	3h
Assay run time	4 h	5h	2h ª	6h
Extraction control	Yes	yes	yes	yes
PCR control	Yes	yes	yes	yes
intrinsic control	Yes	no	yes	yes
Other targets	vanA; vanB; CTX-M	AcOXA; MCR 1/2; GES-CPO;	SME; OXA-23,51,58- like; CTX-M group 1 and group 9; GES	TEM; DHA; CTX-M; CMY SHV; OXA 23; 51- like
Traceability	Yes	yes	Depending on DNA extraction system	no

Table 3. Main characteristics of four commercial molecular kits for detecting carbapenemase genes in rectal swabs

^a without extraction step.

Figure 1. Analysis of discordant results

When I say "we"..... I mean THEM

