SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA Azienda Unità Sanitaria Locale della Romagna

Le infezioni da germi MDR in chirurgia

Giorgio Ercolani, PhD Dir.: U.O. Chirurgia Generale e Oncologica Presidio Ospedaliero di Forlì Professore Associato – Università di Bologna

CIAO Study

Sartelli et al. World Journal of Emergency Surgery 2012, 7:36 http://www.wjes.org/content/7/1/36

RESEARCH ARTICLE

Open Access

Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study

Massimo Sartelli^{1*}, Fausto Catena², Luca Ansaloni³, Ari Leppaniemi⁴, Korhan Taviloglu⁵, Harry van Goor⁶, Pierluigi Viale⁷, Daniel Vasco Lazzareschi¹, Federico Coccolini³, Davide Corbella⁸, Carlo de Werra⁹, Daniele Marrelli¹⁰, Sergio Colizza¹, Rodolfo Scibè¹, Halil Alis¹², Nurkan Torer¹³, Salvador Navarro¹⁴, Boris Sakakushev¹⁵, Damien Massalou¹⁶, Goran Augustin¹⁷, Marco Catani¹⁸, Saila Kauhanen¹⁹, Pieter Pletinckx²⁰, Jakub Kenig²¹, Salomone Di Saverio²², Elio Jovine²², Gianluca Guercioni²³, Matej Skrovina²⁴, Rafael Diaz-Nieto²⁵, Alessandro Ferrero²⁶, Stefano Rausei²⁷, Samipetteri Laine²⁸, Piotr Major²⁹, Eliane Angst³⁰, Olivier Pittet³¹, Ilor Herych³², Ferdinando Agresta³³, Nereo Vettoretto³⁴, Elia Poiasina³, Jaan Tepp³⁵, Gunter Weiss³⁶, Giorgio Vasquez³⁷, Nikola Vladov³⁸, Cristian Tranà³⁹, Samir Delibegovic⁴⁰, Adam Dziki⁴¹, Giorgio Giraudo⁴², Jorge Pereira⁴³, Helen Tzerbinis⁴⁴, David van Dellen⁴⁵, Martin Hutan⁴⁶, Andras Vereczkei⁴⁷, Avdyl Krasniqi⁴⁸, Charalampos Seretis⁴⁹, Cristian Mesina⁵⁰, Miran Rems⁵¹, Fabio Cesare Campanile⁵², Pietro Coletta⁵³, Mirjami Uotila-Nieminen⁵⁴, Mario Dente⁵⁵, Konstantinos Bouliaris⁵⁶, Konstantinos Lasithiotakis⁵⁷, Madimir Khokha⁵⁸, Dragoljub Zivanovic⁵⁹, Dmitry Smirnov⁶⁰, Athanasios Marinis⁶¹, Ionut Negol⁶², Ludwig Ney⁶³, Robeto Bini⁶⁴, Miguel Leon⁶⁵, Sergio Aloia⁹, Cyrille Huchon⁶⁶, Radu Moldovanu⁶⁷, Renato Bessa de Melo⁶⁸, Dimitrios Giakoustidis⁶⁰, Orestis Ioannidis⁷⁰, Michele Cucchi², Tadeja Pintar⁷¹, Zoran Krivokapic⁷²

The CIAO Study ("Complicated Intra-Abdominal infections Observational" Study) is a multicenter study performed throughout Europe over the course of a 6-month observational period (January - June 2012).

Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. *Sartelli M et al, World J Emerg Surg 2012;7:36.*

Source of infection in 4553 patients from 132 hospitals worldwide (15 Oct 2014– 15 Feb 2015)			
Source of infection	Number (%)		
Appendicitis	1553 (34.2)		
Cholecystitis	837 (18.5)		
Post-operative	387 (8.5)		
Colonic non-diverticular perforation	269 (5.9)		
Gastro-duodenal perforations	498 (11)		
Diverticulitis	234 (5.2)		
Small bowel perforation	243 (5.4)		
Others	348 (7.7)		
PID	50 (1.1)		
Post traumatic perforation	114 (2.5)		
Total	4553 (100)		

CIAO Study

Multivariate analysis: risk factors for occurrence of death during hospitalization

Risk factors	Odds Ratio	95%CI	р
Age	3.3	2.2-5	<0.0001
Severe sepsis in the immediate post-operative course	27.6	15.9-47.8	<0.0001
Septic shock in the immediate post-operative course	14.6	8.7-24.4	<0.0001
Colonic non diverticular perforation	4.7	2.5-8	<0.0001
Complicated diverticulitis	2.3	1.5-3.7	<0.0001
Small bowel perforation	21.4	8-57.4	<0.0001
Delayed initial intervention	2.4	1.5-3.7	0.0001

Stepwise multivariate analysis, PR=0.005 E PE=0.001 (Hosmer-Lemeshow chi 2(8)=1.68, area under ROC curve=0.9465)

CIAO Study

Aerobic bacteria from intra-operative peritoneal fluid

Total	1,525 (100%)
Aerobic Gram-negative bacteria	1,041 (69.2%)
Escherichia coli	632 (41.4%)
(Escherichia coli resistant to third generation cephalosporins)	64 (4.2%)
Klebsiella pneuumoniae	109 (7.1%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	37 (2.4%)
Enterobacter	63 (4.1%)
Proteus	33 (2.1 %)
Pseudomonas	80 (5.2%)
Others	124 (8.1%)
Aerobic Gram-positive bacteria	484 (31.7%)
Enterococcus faecalis	169 (11%)
Enterococcus faecium	72 (4.7%)
Staphylococcus Aureus	56 (3.7%)
Streptococcus spp.	100 (6,6%)
Others	87 (5.7%)

Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. *Sartelli M et al, World J Emerg Surg 2012;7:36.*

Community-acquired IAIs Healthcare-associated (nosocomial) IAIs

,152 patients ,701 (79%) affected by CA-IAIs 451 (21%) affected by HA-IAIs	lsolates n°	lsolates n°
Aerobic bacteria	988 (100%)	567 (100%)
Escherichia coli	480 (48.6%)	152 (26.8%)
(Escherichia coli resistant to third generation cephalosporins)	30 (3%)	34 (6%)
Klebsiella pneumoniae	52 (5.2%)	57 (10%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	11 (1,7%)	22 (6.7%)
Pseudomonas	42 (4.2%)	38 (6.7%)
Enterococcus faecalis	78 (7.9%)	91 (16%)
Enterococcus faecium	39 (3.9%)	43 (7.6%)

Surveillance of antimicrobial resistance in Europe 2018

Figure 3.3. *Escherichia coli*. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018

Surveillance of antimicrobial resistance in Europe 2018

Figure 3.9. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018

2018

Surveillance of antimicrobial resistance in Europe

Figure 3.11. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018

Current status of post-operative infections due to antimicrobial-resistant bacteria after digestive tract surgery in Japan: Japan Postoperative Infectious Complications Survey in 2015 (JPICS'15)

Mao Hagihara¹ · Shinya Kusachi² · Yukiko Kato¹ · Yuka Yamagishi¹ · Toru Niitsuma² · Hiroshige Mikamo¹ · Yoshio Takesue³ · Yoshinobu Sumiyama⁴

				9° <u></u>			
	Cases (n)			7	.5%		
	Total	ESBL	MRSA	VRE	MDRP	MDR-GN	IPM-RP
Cases (total)	905ª	21	35	0	0	6	4
Number of centers	28	14	17	0	0	4	4

7516 surgeries

Mortality:6.7%

Surgery Today

Current status of post-operative infections due to antimicrobial-resistant bacteria after digestive tract surgery in Japan: Japan Postoperative Infectious Complications Survey in 2015 (JPICS'15)

Mao Hagihara¹ • Shinya Kusachi² • Yukiko Kato¹ • Yuka Yamagishi¹ • Toru Niitsuma² • Hiroshige Mikamo¹ • Yoshio Takesue³ • Yoshinobu Sumiyama⁴

Surgical procedure^a Cases (n) Total^a IPM-RP ESBL MRSA MDR-GN Cases (total) 723^b Esophageal malignant tumor surgery (combined digestive tract reconstructive surgery) Secondary reconstruction after esophagectomy Reconstruction of the esophagus Stomach incision Stomach local excision Gastrectomy Cardia side gastrectomy Gastrointestinal anastomosis (including Brown anastomosis) Gastrostomy additional surgery (including percutaneous endoscopic gastrostomy) Hepatectomy (expansion lobectomy) Hepatectomy (Lobectomy) Hepatectomy (expansion lobectomy with revascularization) Acute disseminated peritonitis surgery Colectomy (colon half-side resection) Colectomy (small-range resection) Colectomy (all resection, subtotal resection or malignant tumor surgery) Small bowel resection Colostomy closure (with intestinal resection) Colostomy closure (without intestinal resection) Colostomy additional surgery Common bile duct stomach (intestine) anastomosis Cholecystectomy Bowel obstruction surgery Rectal resection-amputation (amputation) Rectal resection-amputation (low anterior resection surgery) Pancreatic head tumor resection (lymph node dissection) Pancreatic head tumor resection (combined resection of peripheral organs) Pancreatic head tumor resection (amputation) Head of the pancreas tail tumor resection (lymph node dissection) Head of the pancreas tail tumor resection (combined resection of peripheral organs)

Surgical procedure ^a		Cases (n)					
	Total	ESBL	MRSA	MDR-GN	IPM-RP		
Total	182 ^b	5	4	2	1		
Laparoscopic gastrectomy	29	1	1	0	0		
Laparoscopic total gastrectomy	9	1	0	0	0		
Laparoscopic small bowel resection	5	0	1	0	0		
Laparoscopic colectomy (small-range resection, colon half-side resection)	33	1	0	2	0		
Laparoscopic colectomy (all resection, subtotal resection)	3	1	0	0	0		
Laparoscopic rectal resection-amputation (amputation)	15	0	1	0	0		
Laparoscopic cholecystectomy	84	1	1	0	0		
Laparoscopic biliary incision stones, hysterectomy	4	0	0	0	1		

Table 4 AMR bacteria detected after digestive surgeries for each open surgery type

Surgery Today

Sartelli et al. World Journal of Emergency Surgery (2017) 12:22 DOI 10.1186/s13017-017-0132-7

REVIEW

World Journal of Emergency Surgery

Open Access

Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference

Massimo Sartelli^{1*}, Fausto Catena², Fikri M. Abu-Zidan³, Luca Ansaloni⁴, Walter L. Biffl⁵, Marja A. Boermeester⁶, Marco Ceresoli³, Osvaldo Chiara⁷, Federico Coccolini³, Jan J. De Waele⁸, Salomone Di Saverio⁹, Christian Eckmann¹⁰, Gustavo P. Fraga¹¹, Maddalena Giannella¹², Massimo Girardis¹³, Ewen A. Griffiths¹⁴, Jeffry Kashuk¹⁵, Andrew W. Kirkpatrick¹⁶, Vladimir Khokha¹⁷, Yoram Kluger¹⁸, Francesco M. Labricciosa¹⁹, Ari Leppaniemi²⁰, Ronald V. Maier²¹, Addison K. May²², Mark Malangoni²³, Ignacio Martin-Loeches²⁴, John Mazuski²⁵, Philippe Montravers²⁶, Andrew Peitzman²⁷, Bruno M. Pereira¹¹, Tarcisio Reis²⁸, Boris Sakakushev²⁹, Gabriele Sganga³⁰, Kjetil Soreide³¹, Michael Sugrue³², Jan Ulrych³³, Jean-Louis Vincent³⁴, Pierluigi Viale¹² and Ernest E. Moore³⁵

Classification

Diagnosis

Source control

Antimicrobial therapy

Sepsis control

Antimicrobial therapy

The treatment of patients with complicated IAI involves both timely source control and antimicrobial therapy.

Empiric antimicrobial therapy is important in the management of intraabdominal infections and must be broad enough to cover all likely organisms. Adequate source control is mandatory in the management of complicated IAIs.

Rational use of antibiotics in surgery

WHICH ARE THE PRINCIPLES OF ANTIBIOTIC THERAPY?

It is important to know the **local epidemiological context** to define therapeutic protocols / guidelines for surgical infections treatment.

It is important to frame **clinical conditions**, in particular to differentiate between critical and non-critical patients.

It is important to pursue as much as possible **targeted therapy or in any case a de**escalation in order to preserve some molecules: eg. Carbapenems.

It is important to assess properly the **duration of therapy** based on **source control**.

Community-acquired IAIs

The major pathogens involved in community-acquired intra-abdominal infections are Enterobacteriaceae (especially *E. coli, K pneumoniae, Enterobacter*) Streptococcus species, and anaerobes (especially *B. fragilis*).

Community-acquired IAIs and ESBL

However, if CA-IAI patients have prior exposure to antibiotics or serious comorbidities requiring concurrent antibioitic therapy, anti-ESBL-producer coverage may be warranted.

Ben-Ami R, Rodriguez-Bano J, Arsian H, Pitout JD, Quentin C, Calbo ES, Azap OK, Arpin C, Pascual A, Livermore DM, Garau J, Carmeli Y: A multinational survey of risk factors for infection with extended-spectrum β-lactamaseproducing Enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009, 49:682–690.

In the past 20 years, the incidence of healthcare-associated infections caused by drug-resistant microorganisms has risen dramatically, probably in correlation with escalating levels of antibiotic exposure and increasing frequency of patients with one or more predisposing conditions, including elevated severity of illness, advanced age, degree of organ dysfunction, low albumin levels, poor nutritional status, immunodepression, presence of malignancy, and other comorbidities.

"ESKAPE" pathogens

- Enterococcus faecium
- Staphylococcus aureus
- Klebsiella pneumoniae
- Acinetobacter baumanii
- Pseudomonas aeruginosa
- Enterobacteriaceae species

WHICH ARE THE PRINCIPLES OF ANTIBIOTIC THERAPY?

It is important to know the **local epidemiological context** to define therapeutic protocols / guidelines for surgical infections treatment.

It is important to frame **clinical conditions**, in particular to differentiate between critical and non-critical patients.

It is important to pursue as much as possible **targeted therapy or in any case a de-escalation** in order to preserve some molecules: eg. Carbapenems.

It is important to assess properly the duration of therapy based on source control.

SURGEONS IN MANY WAYS ARE ON THE FRONTLINE OF THE FIGHT AGAINST RESISTANCE.

This begins with appropriate use of **antimicrobial prophylaxis**. The elements of this are:

- correct selection of patients known to benefit from prophylaxis
- proper choice of antibiotics at the right dose
- timing (administration with 60 minutes of incision)
- intra-operative redosing for procedures lasting more than two half-lives of the antibiotic and **no** post-operative administration

Therapeutic use of antibiotics for soft tissue, intra-abdominal, and other infections should be guided by microbiology results and attention paid to when therapy should be terminated.

"Calendar-based prescribing" (one week, two weeks, etc.) should be replaced by monitoring of progress.

Diagnostic tool in certain situations...

Role of the biomarkers in surgery

C-reactive protein (CRP) and procalcitonin (PCT) can help clinicians to **diagnose** surgical infections.

PCT can help clinicians in **early discontinuation of antibiotics** in critically ill patients and in patients undergoing intervention for acute peritonitis.

Biomarkers as an antimicrobial stewardship instrument !

A procalcitonin based algorithm to guide antibiotic therapy in secondary peritonitis following emergency surgery: A prospective study with propensity score matching analysis. *Huang TS, et al. PLoS One 2014;9:e90539*.

patients diagnosed at the emergency department with secondary peritonitis and underwent emergency surgery were enrolled. PCT concentrations were obtained preoperatively, on post-operative days 1, 3, 5, and 7, and on subsequent days if needed. Antibiotics were discontinued if PCT was <1.0 ng/mL or decreased by 80% versus day 1, with resolution of clinical signs.

	PCT group	Control	р
median duration of antibiotics (days)	3.4	6.1	< 0.001

the PCT-based algorithm was substantially associated with a 87% reduction in hazard of antibiotic exposure within 7 d (HR) 0.13, 95% CI 0.07–0.21, and a 68% reduction in hazard after 7 d (adjusted HR 0.32, 95% CI 0.11-0.99)

Procalcitonin-guided therapy may reduce length of antibiotic treatment in intensive care unit patients with secondary peritonitis: A multicenter retrospective study. *Maseda E, et al. J Crit Care 2015;30:537–542*

A total of 121 patients (52 PCT-guided, 69 non-PCT-guided) were enrolled

28 day mortality	19.2	29	NS
In-H Mortality (%)	9.6	13	NS
Median LOS	20	17	NS
Median length of intra-SICU (days)	5	5	NS
	PCT	control	р

Trial of Short-Course Antimicrobial Therapy for Intra-abdominal Infection

Sawyer RG et al N Engl J Med 2015; 372:1996-2005

518 patients with complicated intraabdominal infection and adequate source control were randomly assigned to receive antibiotics until 2 days after the resolution of fever, leukocytosis, and ileus, with a maximum of 10 days of therapy (control group), or to receive of antibiotics fixed course a (experimental group) for 4±1 calendar days. The primary outcome was a composite of surgical-site infection, recurrent intraabdominal infection, or death within 30 days after the index source-control procedure, according to treatment Secondary outcomes group. included the duration of therapy and rates of subsequent infections.

APACHE II score‡	9.9±0.4	10.3±0.4
Maximum white-cell count — per mm ³	15,600±0.4	17,100±0.7
Maximum body temperature — °C	37.8±0.1	37.7±0.1
Organ of origin — no. (%)		
Colon or rectum	80 (30.8)	97 (37.6)
Appendix	34 (13.1)	39 (15.1)
Small bowel	31 (11.9)	42 (16.3)
Source-control procedure — no. (%)		
Percutaneous drainage	86 (33.1)	86 (33.3)
Resection and anastomosis or closure	69 (26.5)	64 (24.8)
Surgical drainage only	55 (21.2)	54 (20.9)
Resection and proximal diversion	27 (10.4)	37 (14.3)
Simple closure	20 (7.7)	12 (4.7)
Surgical drainage and diversion	3 (1.2)	4 (1.6)

Trial of Short-Course Antimicrobial Therapy for Intra-abdominal Infection

Sawyer RG et al N Engl J Med 2015; 372:1996-2005

	Control Group	Experimental Group (N = 257)	P Value
Duration of outcome — days	(11-200)	(13-201)	
Antimicrobial therapy for index infection			< 0.001
Median	8	4	
Interquartile range	5–10	4–5	
Antimicrobial-free days at 30 days			<0.001
Median	21	25	
Interquartile range	18-25	21–26	
Hospitalization after index procedure			0.48
Median	7	7	
Interquartile range	4–11	4–11	
Hospital-free days at 30 days			0.22
Median	23	22	
Interquartile range	18-26	16-26	

Trial of Short-Course Antimicrobial Therapy for Intra-abdominal Infection

Sawyer RG et al N Engl J Med 2015; 372:1996-2005

Variable	Control Group (N = 260)	Experimental Group (N = 257)	P Value
Primary outcome: surgical-site infection, recurrent intraabdominal infection, or death — no. (%)	58 (22.3)	56 (21.8)	0.92
Surgical-site infection	23 (8.8)	17 (6.6)	0.43
Recurrent intraabdominal infection	36 (13.8)	40 (15.6)	0.67
Death	2 (0.8)	3 (1.2)	0.99
Time to event — no. of days after index source-control procedure			
Diagnosis of surgical-site infection	15.1±0.6	8.8±0.4	< 0.001
Diagnosis of recurrent intraabdominal infection	15.1±0.5	10.8±0.4	< 0.001
Death	19.0±1.0	18.5±0.5	0.66

Protocol violation

18% 27%

Longer-duration antimicrobial therapy does not prevent treatment failure in highrisk patients with complicated intra-abdominal infections

Hassinger TE et al, Surgical Infect 2017; 18

Patients enrolled in the Study to Optimize Peritoneal Infection Therapy trial were evaluated retrospectively to identify risk factors associated with treatment failure, which was defined as the composite outcome of recurrent IAI, surgical site infection, or death.

The STOP-IT trial included 517 patients enrolled The overall rate of treatment failure was 22.1%.

Four variables showed significant association with failure •steroid use, •hospital acquired infection, •APACHE II score >15, •colonic source of infection

Both the presence and the number of risk factors were associated independently with treatment failure, but treatment duration WAS NOT !

OPPORTUNITA' DI STEWARDSHIP ANTIMICROBICA IN CHIRURGIA

GLI ATTORI PRINCIPALI:

HIERACHICAL PATTERN OF PRESCRIPTIONS

Antimicrobial Stewardship: A Call to Action for Surgeons

Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic review and meta-analysis

David Baur et al - Lancet Infect Dis 2017; 17: 990–1001

Forest plot of the incidence ratios for studies of the effect of antibiotic stewardship on the incidence of MDR GNB

	MDR GNB	Events/patient-days						Incidence ratio (95% Cl)	
		Before	After						
Apisarnthanarak et al ¹⁸	MDR Pseudomonas aeruginosa	13/2889	1/1324 -	•		—		0.08 (0.00-1.41)	
Marra et al ³¹	Imipenem-resistant Acinetobacter baumannii	23/8421	2/8066	•				0.09 (0.02-0.39)	
Apisarnthanarak et al ¹⁸	XDR A baumannii	33/2889	2/1324	-•	_			0.13 (0.03-0.55)	
Takesue et al ³²	Metallo-β-lactamase GNB	27/698794	6/635794		<u> </u>			0.24 (0.10-0.59)	
Cook and Gooch ³⁷	Carbapenem-resistant P aeruginosa	44/220474	13/261318	-+				0.25 (0.13-0.46)	
Peto et al ⁴²	MDR P aeruginosa	2/4280	1/4217			—		→ 0.25 (0.01–5.63)	
Takesue et al ³²	MDR GNB	39/698794	10/635794					0.28 (0.14-0.56)	
Arda et al ³⁶	Meropenem-resistant Acinetobacter spp	28/285606	10/308852					0.33 (0.16-0.68)	
Leverstein-van Hall et al ⁴⁵	MDR Enterobacteriaceae	9/19142	4/23583			<u> </u>		0.36 (0.11-1.17)	
Yeo et al ²³	Carbapenem-resistant P aeruginosa	17/20469	8/21798			4		0.44 (0.19-1.02)	
Arda et al ³⁶	Meropenem-resistant P aeruginosa	8/285606	4/308852	•				0.46 (0.14-1.54)	
Marra et al ³¹	Imipenem-resistant Klebsiella pneumoniae	6/8421	3/8066		•	—		0.52 (0.13–2.09)	
Marra et al ³¹	Imipenem-resistant P aeruginosa	15/8421	8/8066		•	—		0.56 (0.24-1.31)	
Arda et al ³⁶	Meropenem- resistant A baumannii	45/285606	29/308852		•	-		0.60 (0.37-0.95)	
Meyer et al ³⁴	Imipenem-resistant P aeruginosa	34/13502	33/21420	_	•	_		0.61 (0.38-0.99)	
Yeo et al ²³	Carbapenem- resistant A baumannii	10/20469	9/21798		•	—		0.85 (0.34-2.08)	
Zou et al ²⁰	Meropenem-resistant P aeruginosa	185/834560	172/883500			+		0.88 (0.71-1.08)	
Niwa et al ²⁵	Imipenem-resistant P aeruginosa	11/128146	15/113873				•	→ 1.53 (0.70–3.34)	
Aubert et al ⁴³	Imipenem-resistant P aeruginosa	49/5100	44/2548			-		→ 1.80 (1.20-2.70)	
Overall								0-49 (0-35-0-68)	
I²=76·2%, p=0·000			ő	•	.5	1.0	1.5	2.0	

Antibiotic stewardship Antibiotic stewardship programme effective programme not effective Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic review and meta-analysis

David Baur et al - Lancet Infect Dis 2017; 17: 990–1001

Forest plot of the incidence ratios for studies of the effect of antibiotic stewardship on the incidence of *Clostridium difficile* infections

Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic review and meta-analysis

David Baur et al - Lancet Infect Dis 2017; 17: 990–1001

Added value of this study

This systematic review and meta-analysis showed, for the first time, the effectiveness of antibiotic stewardship programmes in reducing the incidence of infections and colonisation due to multidrug-resistant Gram-negative bacteria, extended-spectrum β-lactamase (ESBL)-producing Gram-negative bacteria, meticillin-resistant *Staphylococcus aureus*, and *C difficile*.

The 8 goals of the antimicrobial stewardship programs

Let's combat antimicrobial resistance in our hospitals