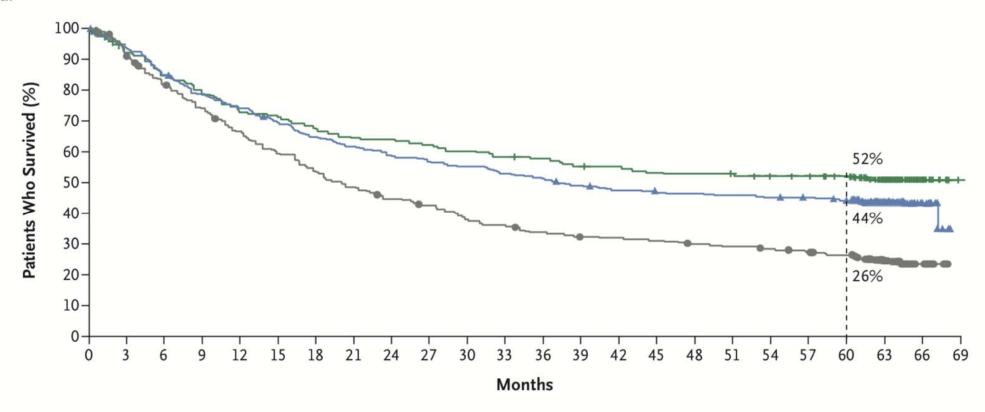


Gruppo Italiano Interdisciplinare Manipolazione e Aferesi per Terapie Cellulari

VI Congresso Nazionale

Sistemi di produzione: generazione CAR-T ed applicazioni nei tumori solidi

Massimo Guidoboni, MD SSD Immunoterapia – Terapia Cellulare e Biobanca IRCCS IRST Meldola

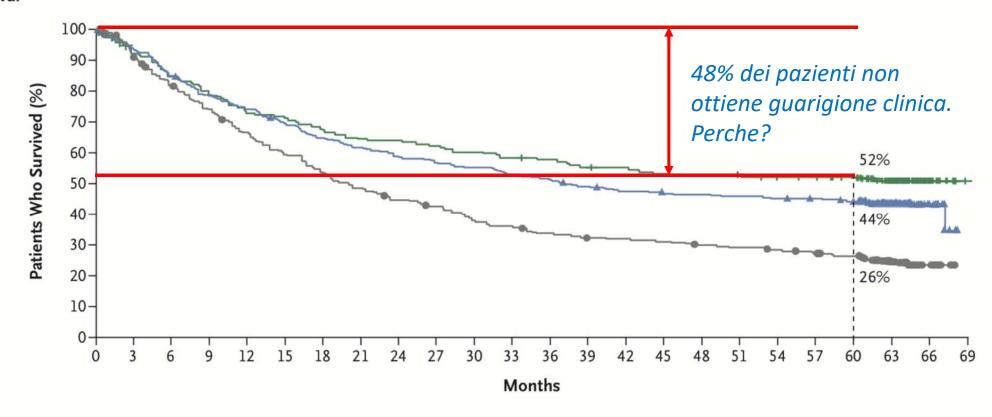


Melanoma come «model disease» dei tumori solidi: quale ruolo per le cellule CAR-T?

A Overall Survival

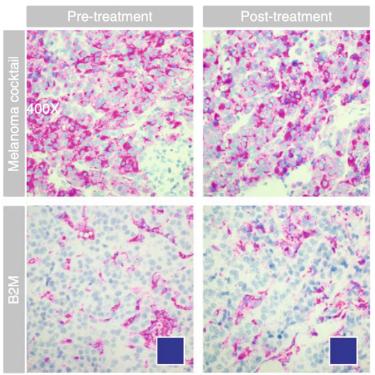
No. at Risk

Nivolumab plus ipilimumab	314	292	265	248	227	222	210	201	199	193	187	181	179	172	169	164	163	159	157	155	150	92	14	0
Nivolumab	316	292	266	245	231	214	201	191	181	175	171	164	158	150	145	142	141	139	137	135	130	78	14	0
Ipilimumab	315	285	253	227	203	181	163	148	135	128	113	107	100	95	94	91	87	84	81	77	73	36	12	0

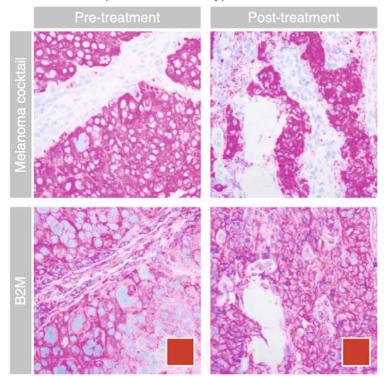


Melanoma come «model disease» dei tumori solidi: quale ruolo per le cellule CAR-T?

A Overall Survival

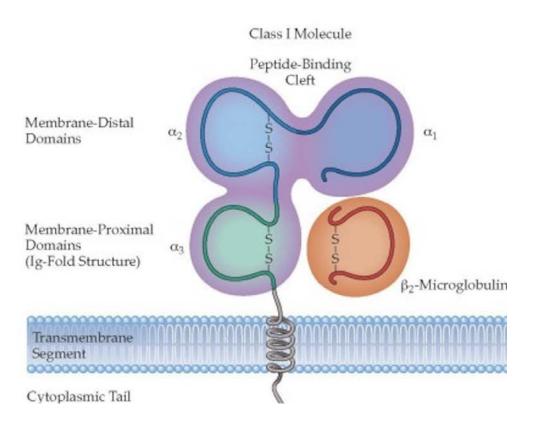

No. at Risk

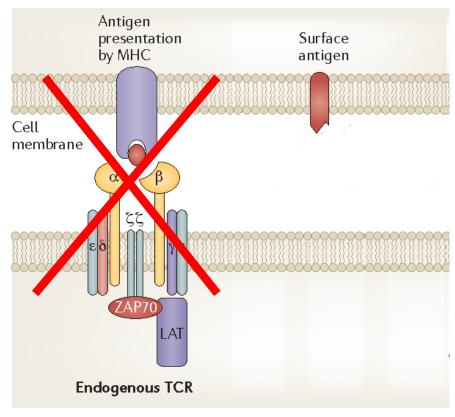
Nivolumab plus ipilimumab	314	292	265	248	227	222	210	201	199	193	187	181	179	172	169	164	163	159	157	155	150	92	14	0
Nivolumab	316	292	266	245	231	214	201	191	181	175	171	164	158	150	145	142	141	139	137	135	130	78	14	0
Ipilimumab	315	285	253	227	203	181	163	148	135	128	113	107	100	95	94	91	87	84	81	77	73	36	12	0



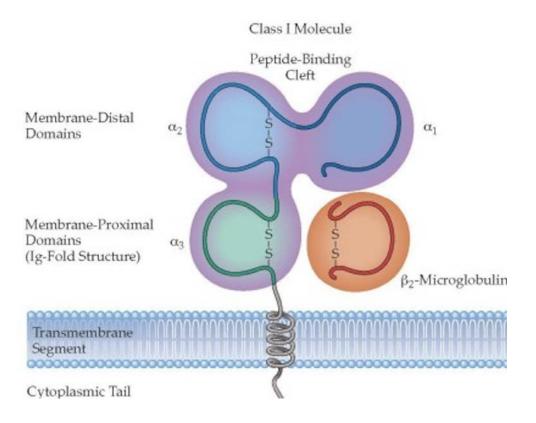
C Pat25: nonresponder with B2M LOH

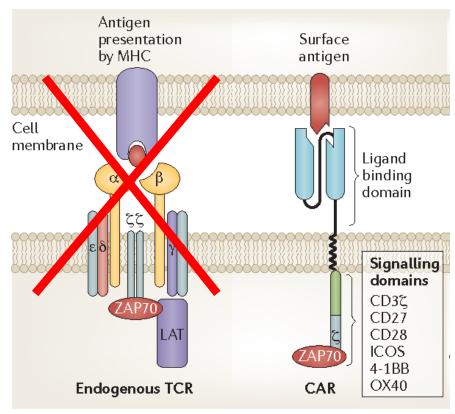
d Pat272: responder with wild-type B2M

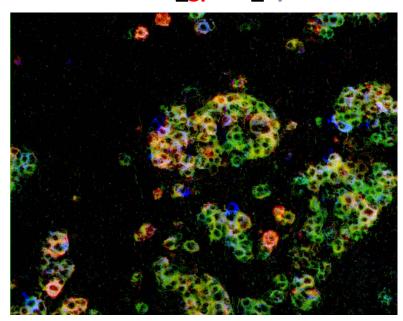


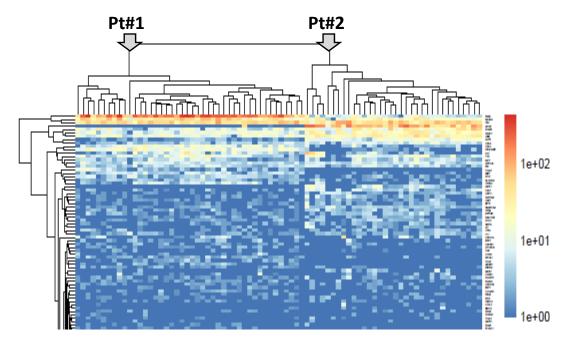

Circa 1/3 di questi pazienti presenta perdita genetica di b2-microglobulina, con conseguente alterata presentazione antigenica in classe I

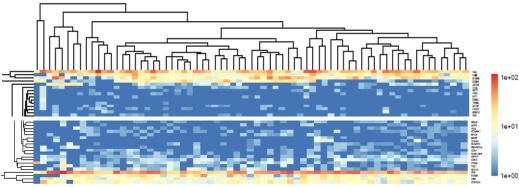
Sade-Feldman et al 2017; Nature Comm



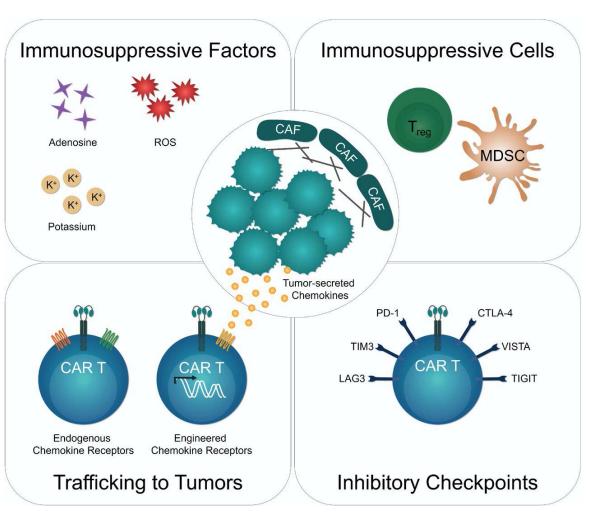




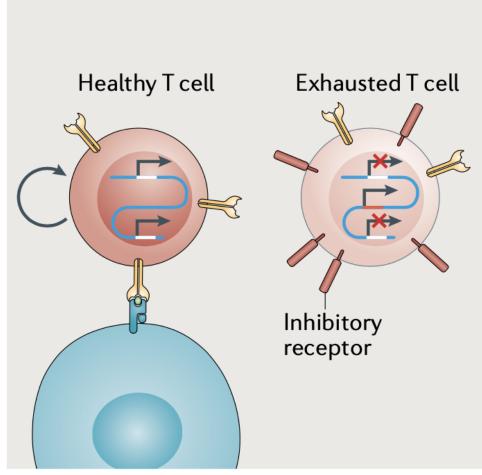



I tumori solidi sono estremamente geneticamente e fenotipicamente ETEROGENEI, con sottopopolazioni caratterizzate da un profilo di espressione genica non sovrapposto

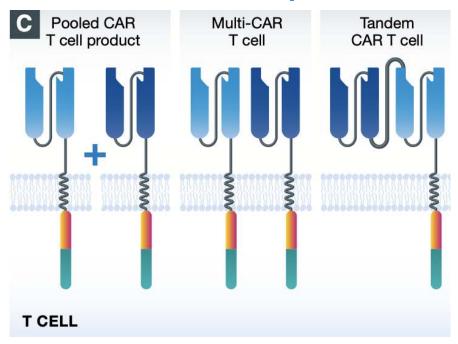
Mart-1_gp100_Tyr

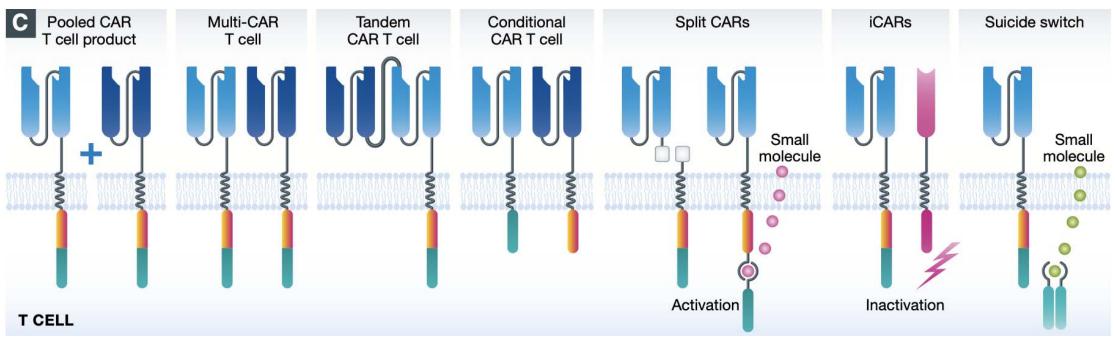


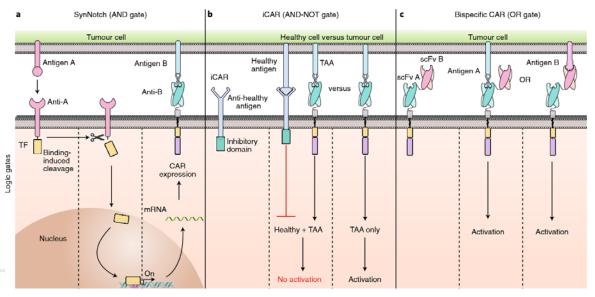
Pt#3



Meccanismi di resistenza acquisita alle cellule CAR-T


b T cell exhaustion


Come superare l'eterogeneità antigenica dei tumori solidi?



Come superare l'eterogeneità antigenica dei tumori solidi?

Sviluppiamo un prodotto CAR-T

- 1) Cellule di partenza? (PBMC in toto, CD3+ T cells, sottopopolazioni di T es. memory stem cells)
- 2) Costrutto CAR?
 - a. Antigene/i target
 - b. scFv (topo o uomo?)
 - c. Domini di signaling
 - d. Design con recettori multipli con logica combinatoria
- 3) Gene transfer? (retrovirus, lentivirus, approcci non virali quali sleeping beauty, piggybac, zinc-finger nuclease, TALEN, CRISPR/Cas9 etc)
- 4) Coltura ed espansione ex vivo (DC, artificial APC, beads CD3/28, reagenti proprietari etc)
- 5) Device di espansione? (bioreattori come GE WAVE, G-Rex, Prodigy)

Qualifica della facility

- Strumentazione per il monitoraggio ambientale
- Strumentazione per il processo di produzione (es. bioreattori etc)
- Strumentazione analitica (es. citofluorimetri)
- PERSONALE!!!!

Qualifica del componenti ancillari

- Plastica
- Medium di coltura
- Citochine
- Agenti di criopreservazione
- Vettore virale

Manufacturing phases	And	cillary components
T-cell selection and activation	0	Selection accessory set, such as the CliniMACS set
	0	Components for selection medium, such as X-VIVO 15, OpTimizer, human serum albumin
	0	Selection reagents, such as Dynabeads, TransAct beads, ExpAct beads, Expamers
Genetic modification	0	Viral vector, such as retroviral vector and lentiviral vector
	0	Nonviral gene modification reagents, such as DNA plasmids and mRNA
T-cell expansion	0	Components for the expansion medium, such as X-VIVO 15, IL2, cytokines
Formulation	\circ	Cell washing accessory sets
	0	Components in cell washing medium, such as phosphate buffered saline
	0	Components in formulation medium, such as plasmalyte buffer
Cryopreservation	0	Components used in cryopreservation medium, such as dimethyl sulfoxide

Qualifica del processo di produzione: integrazione di

- Facilities
- Qualifica degli strumenti
- Piano di monitoraggio ambientale
- Selezione dei raw materials
- SOPs
- Batch records
- Piano di formazione del personale
- QC e metodi analitici

Test in-process e di rilascio

Parameter	Release testing for CAR-T introduced by retroviral and lentiviral vector	Release testing for CAR-T intro- duced by transposon/transposase	Release testing for CAR-T intro- duced by mRNA electroporation						
Safety	Gram stain/sterility	Gram stain/sterility	Gram stain/sterility						
	 Mycoplasma 	 Mycoplasma 	 Mycoplasma 						
	 Endotoxin level 	 Endotoxin level 	 Endotoxin level 						
	 Copies of transgene insertion 								
	RCR/RCL								
Purity	• % CD3+T cells	• % CD3+T cells	• %CD3+Tcells						
	%CAR-T cells	• %CAR-T cells							
	 Residual tumor burden 	 Residual AAPCs 							
	 Residual beads 								
Identity		• % CART cells							
Potency	In vitro CTL or IFN-γ secretion								

Abbiamo un prodotto GMP, andiamo in clinica!

Brussels, 10.10.2019 C(2019) 7140 final

GUIDELINES

on Good Clinical Practice specific to Advanced Therapy Medicinal Products

Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRST-IRCCS

Car-T project

Preventing the diseases, personalizing the treatment, improving the quality of life

MEF via MoH: €55 MI (2020-2024)

Sviluppo di una progettualità coordinata dal network Alleanza Contro il Cancro (ACC) mirata a incrementare l'uso dell'immunoterapia basata sull'impiego delle cellule CAR T in pazienti oncologici

WP4: Identificazione e validazione di nuove strategie per aumentare attivazione, espansione, sopravvivenza, penetrazione nei tessuti e azione citotossica delle cellule CAR-T (Coordinatore IRST-IRCCS Meldola)

Programma:

- Identificazione delle sottopopolazioni linfocitarie e dei costrutti più adatti ad incrementare l'attività in vivo delle cellule CAR-T (recettori per chemochine o citochine infiammatorie, doppio targeting, modulazione della co-stimolazione, terapia combinata con checkpoint inhibitors)
- Studio della interazione delle cellule CAR-T con il microambiente tumorale (monitoraggio post-infusione delle cellule CAR T; emergenza di popolazioni mieloidi soppressorie, cellule T regolatorie) e del potenziale esaurimento funzionale delle cellule CAR T
- Generazione di costrutti CAR bispecifici
- Identificazione e validazione di strategie innovative per promuovere la penetrazione di cellule CAR T in neoplasie solide

ELACURA Progetto CAR-T IRST

Ricerca preclinica: identificazione di target adeguati

Sviluppo GMP/Produzione: 'formattazione' del prodotto identificato

Monitoraggio immunologico: specificità, persistenza nel paziente etc

Sviluppo clinico: team clinico, biostatistica

Gruppo Anticorpi Terapeutici

SSD Immunoterapia

- Laboratorio di Immunomonitoring

Lab TCS
Valutazione delle
necessità strutturali e di
processo legate al
prodotto identificato

Sviluppo clinico

- Gruppo fase 1
- UBSC e Centro di Coordinamento

CellFactory

CellFactory

