AUTOLOGOUS GRAFT COMPOSITION: WELCOME TO THE JUNGLE

Ravenna, 25-Nov-2017

Francesco Saraceni

Hematology and SCT, Ravenna

AUTOLOGOUS GRAFT COMPOSITION: BACKGROUND

- Auto-SCT is a potentially curative option for different hematological diseases
- Mobilized PBSC have largely replaced BM as graft source
- Mobilized PBSC has been used for >20 years, however poor knowledge on graft

composition

- Impact of different cell subsets on engraftment, immune recovery, anti-tumor activity (??)
- Impact of different mobilizing agents on graft composition (??)

- CD34+ stem cell dose
- CD34+ stem cell viability
- •CD34+ stem cell functionality
- CD34+, again...no, that's enough! what else besides CD34+?
 - \rightarrow the immune perspective

- CD34+ stem cell dose
- CD34+ stem cell viability
- •CD34+ stem cell functionality
- CD34+, again...no, that's enough! what else besides CD34+?
 - \rightarrow the immune perspective

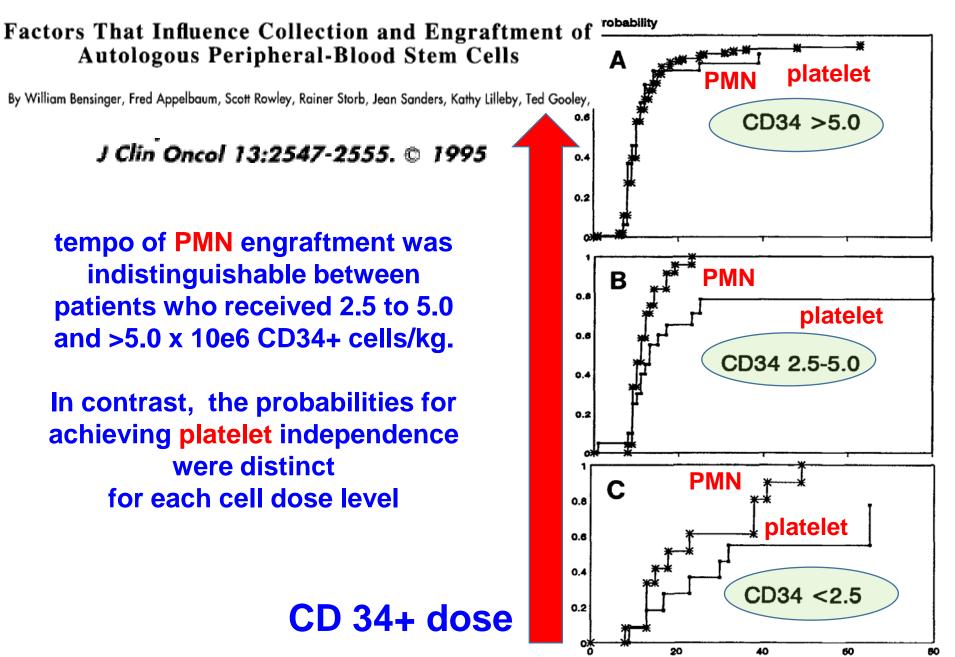
CD34+ stem cell dose is the most important parameter of

graft quality

CD34+ dose ight Engraftment potential ight Graft "potency" and "efficacy"

Question 7: Which is the target PBPC dose?

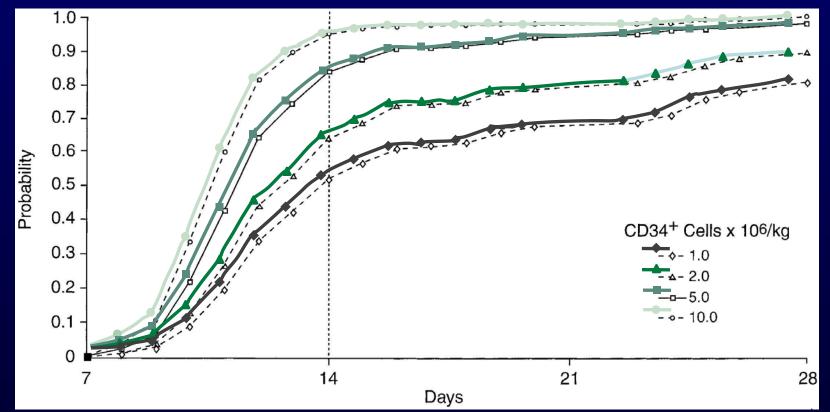
RECOMMENDATIONS. The minimum PBPC dose to be collected and infused to assure a low transplant-related morbidity is 2×10^{6} /kg/body weight CD34+ cells per planned transplant.


The optimal PBPC dose to be collected and infused to assure a prompt hematopoietic recovery is 5×10^6 /kg/body weight CD34+ cells per planned transplant.

AUTOLOGOUS GRAFT COMPOSITION: CD34+ dose

Is there an optimal dose of CD34+ cells to be collected for a safe ASCT?

- ➤The minimal threshold CD34+ cell dose to be infused is agreed to be ≥ 2-2.5 million CD34 cells/kg for a single ASCT.
- The optimal dose for ideal platelet recovery is 4–6 million CD34 cells/kg.
- ➢ Reinfusion of high doses of CD34⁺ cells is associated with:
- Iong term stable engraftment
- ➢ fast platelet and neutrophil engraftment
- reduction in the need for supportive measures, leading to a significant cost sparing
- reduced toxicity and increased survival rates


2002

Dav after Infusion

Optimal Transplant Cell Dose (CD34+/kg)

 Probability of platelet recovery correlated with the number of CD34+ cells transplanted¹

 In a retrospective study, lack of full platelet recovery (>150 x 10⁹/L) was associated with lower CD34+ cell doses²

Ninan MJ, et al. Biol Blood Marrow Transplant. 2007;13:895-904.

Engraftment and blood cell recovery are not the only clinical end points in autografting

8.1. Proposed graded clinical end points in quality assessment				
Objective	End point	Grading		
Primary: Efficacy	Days on antibiotics, transfusion of blood components, days in hospital	Favourable:= 7 days on antibiotics and no transfusionsIntermediate:= 7 days on antibiotics and transfusions OR > 7 days on antibiotics and no transfusionsUnfavourable:> 7 days on		
Secondary : Toxicity	Days to ANC >0.5 x $10^{6/L}$ and Platelets >20 x $10^{6/L}$ Other organ toxicity if	antibiotics and transfusionsFavourable:ANCandplateletsrecovery before 14 daysUnfavourable:ANCorplatelets		
Tertiary: Safety	appropriate Death or disease recurrence	recovery after 14 days <u>Favourable</u> : Alive and without disease progression after 12 months <u>Unfavourable</u> : Death or disease progression before 12 months		

Multivariate analysis

- Pediatric patients resulted to have less toxicity (p=0,0001)
- 2. 1 or 2 apheresis (p=0,001) predicted good outcome
- 3. Toxicity increased with higher CD34+volume reinfused (>500ml) (p=0,002)
- PBSC COLLECTION: CD34+ cells collected > 4 x 10° 6/kg in one apheresis (AL excluded)
- 5. CD34+ cells infused > 5 x 10° 6/kg
- 6. Patients who experienced toxicity had a poor quality transplant (p=0,0001)

Only a minority of auto-SCT procedures resulted "efficacious"

• CD34+ stem cell dose

• CD34+ stem cell viability and outcome

•CD34+ stem cell functionality

- CD34+, again...no, that's enough! what else besides CD34+?
 - \rightarrow the immune perspective

CD34+ VIABILITY

Evaluating CD34+ cell dose: before or after freezing?

- Currently the amount of harvested CD34+ cells is assessed after completing the aphereses, before cryopreservation
- However, such measurement does not account for the variable loss of viable CD34+ cells which occurs during freezing or thawing processes

We would like to know how many viable CD34+ we are infusing to the patient!

EXPECTED VIABLE CD34+ LOSS

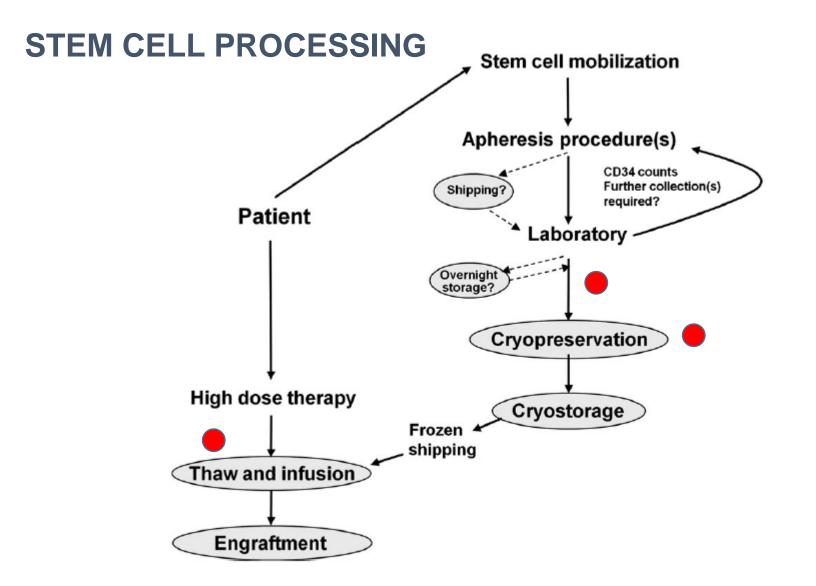
Post-thaw viable CD34⁺ cell count is a valuable predictor of haematopoietic stem cell engraftment in autologous peripheral blood stem cell transplantation

S. Lee,¹ Vox Sanguinis (2008)

Viable CD34+ (%): 98% (70-100) harvest vs 71% (31-89) post-thaw (27% loss)

Pre infusion, post thaw CD34⁺ peripheral blood stem cell enumeration as a predictor of haematopoietic engraftment in autologous haematopoietic cell transplantation

J. D'Rozario et al. / Transfusion and Apheresis Science 50 (2014)


Quantifying loss of CD34⁺ cells collected by apheresis after processing for freezing and post-thaw Mariana V. Castelhano Transfusion and Apheresis Science 48 (2013)

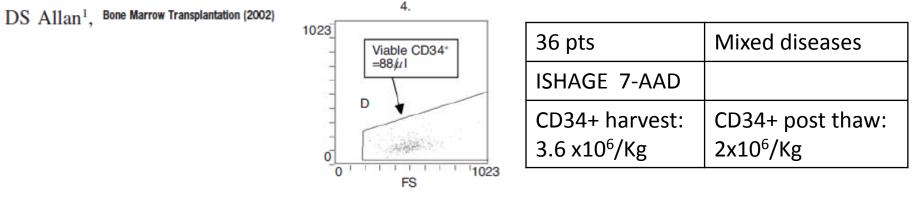
Viable CD34+ (x10⁶/Kg): 4.9 harvest vs 3.2 post-thaw (33% loss)

Hodgkin vs MM higher CD34+ loss

Median CD34+ loss: about 30%

FACTORS AFFECTING VIABILITY

Michael J. Watts^{1,2} British Journal of Haematology, 2016

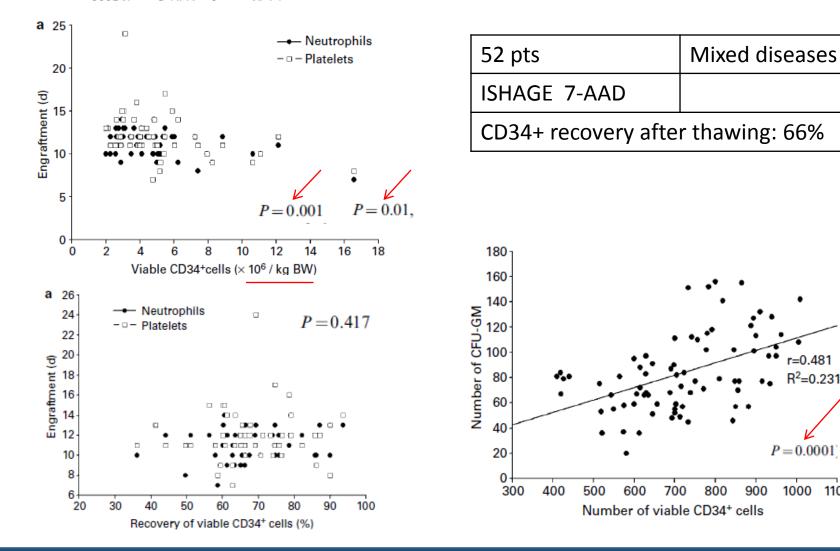

- Which are the main factors affecting frozen HSC viability?

- Pre-cryopreservation: time-to-freezing, WBC contamination
- Cryopreservation: controlled vs passive freezing (?), too fast freezing
- After thawing: delay in reinfusion (acceptable within 2 hours)

- Is there a correlation between CD34+ viability and engraftment kinetics?

VIABILITY vs ENGRAFTMENT

Number of viable CD34⁺ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation

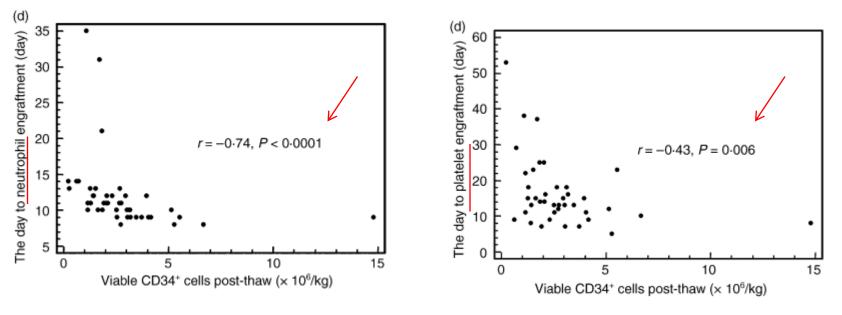

Table 2 Comparing early and slower platelet engraftment

	Platelet engraftment		
-	≤median (14 d)	>median (14 d)	
No. patients	22	14	
Days to engraftment, median (range)	12 (9–14)	18 (15-42)	
CD34 ⁺ cells/kg harvested, median (range)	5.0 $(1.7-182) \times 10^{6}$	$^{\circ}2.9(1.3-8.5)\times10^{6}$	
CD34+ cells/kg post thaw, median (range)	3.0 (0.8-110) x10 ⁶	^b 1.7 (0.7–2.7) × 10 ⁶	
No. patients with $>2.0 \times 10^6$ viable CD34 ⁺ cells/kg			
At time of harvest	20 (91%)	12 (86%) $P = NS$	
Post thaw	15 (68%)	2(14%) P = 0.002	
No. of patients with $>5.0 \times 10^6$ viable CD34 ⁺ cells/kg			
At time of harves	11 (50%)	2 (14%) $P = 0.04$	
Post thaw	6 (27%)	0 (0%) P = 0.06	

VIABILITY vs ENGRAFTMENT

Association of post-thaw viable CD34⁺ cells and CFU-GM with time to hematopoietic engraftment

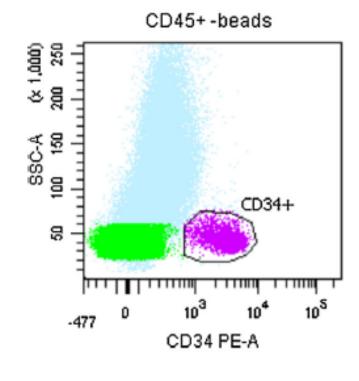
H Yang¹, Bone Marrow Transplantation (2005)

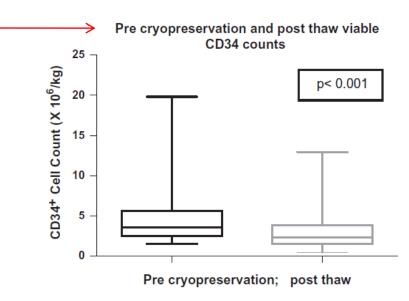

1100

19

Post-thaw viable CD34⁺ cell count is a valuable predictor of haematopoietic stem cell engraftment in autologous peripheral blood stem cell transplantation

S. Lee,¹ Vox Sanguinis (2008)


36 pts, mixed diseases	ISHAGE 7-AAD		
Viable CD34+ (%): 98% (70-100) harvest vs 71% (31-89) post-thaw			
Viable CD34+ (x10 ⁶ /Kg): 3.6 vs 2.2			


VIABILITY vs ENGRAFTMENT

Pre infusion, post thaw CD34⁺ peripheral blood stem cell enumeration as a predictor of haematopoietic engraftment in autologous haematopoietic cell transplantation

J. D'Rozario et al./Transfusion and Apheresis Science 50 (2014)

106 SCT procedures	mixed diseases		
ISHAGE 7-AAD			
Viable CD34+ (x10 ⁶ /Kg): 4.9 harvest vs 3.2 post- thaw (33% loss)			
CD34+ post thaw vs PLT: correlation (no N)			

- Is there a correlation between CD34+ viability and engraftment kinetics?

-Yes, mostly with PLT engraftment

WHAT CLINICAL ENDPOINT FOR GRAFT QUALITY?

Pre infusion, post thaw CD34⁺ peripheral blood stem cell enumeration as a predictor of haematopoietic engraftment in autologous haematopoietic cell transplantation

J. D'Rozario et al./Transfusion and Apheresis Science 50 (2014)

Post thaw CD34 ⁺ count	Mean LOS (d)	
>3.9 × 10 ⁶ /kg 2.3 to $\leq 3.9 \times 10^6$ /kg 1.6 to $\leq 2.3 \times 10^6$ /kg $\leq 1.6 \times 10^6$ /kg	14.2 ± 0.7 15.1 ± 1.0 16.5 ± 0.9 17.8 ± 0.9 Mean red cell units/patient	<i>P</i> < 0.001
>3.9 × 10 ⁶ /kg 2.3 to $\leq 3.9 \times 10^6$ /kg 1.6 to $\leq 2.3 \times 10^6$ /kg $\leq 1.6 \times 10^6$ /kg	2.0 ± 0.1 2.7 ± 0.4 3.6 ± 0.5 3.7 ± 0.4 Mean platelet concentrate units/patient	<i>P</i> < 0.001
>3.9 × 10 ⁶ /kg 2.3 to $\leq 3.9 \times 10^6$ /kg 1.6 to $\leq 2.3 \times 10^6$ /kg $\leq 1.6 \times 10^6$ /kg	1.6 ± 0.2 1.9 ± 0.3 2.4 ± 0.3 2.7 ± 0.2 Mean days of G-CSF administration	<i>P</i> < 0.001
>3.9 × t10 ⁶ /kg 2.3 to $\leq 3.9 \times 10^6$ /kg 1.6 to $\leq 2.3 \times 10^6$ /kg $\leq 1.6 \times 10^6$ /kg	9.6 ± 0.4 10 ± 0.4 10.5 ± 0.5 11.2 ± 0.5 Mean days of IV antibiotic administration	<i>P</i> < 0.001
>3.9 × 10 ⁶ /kg 2.3 to $\leq 3.9 \times 10^6$ /kg 1.6 to $\leq 2.3 \times 10^6$ /kg $\leq 1.6 \times 10^6$ /kg	3.8 ± 0.5 4.9 ± 0.6 6.6 ± 0.8 6.7 ± 0.9	<i>P</i> < 0.001

• CD34+ stem cell dose

• CD34+ stem cell viability and outcome

•CD34+ stem cell functionality

- CD34+, again...no, that's enough! what else besides CD34+?
 - \rightarrow the immune perspective

Does CD34+ viability test represent a valid surrogate of graft functionality?

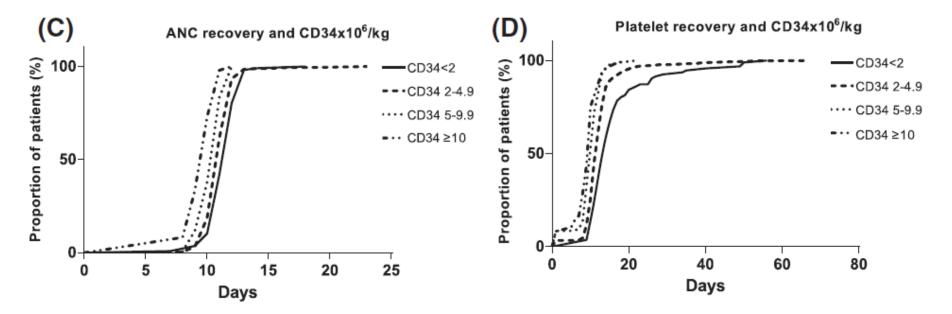
VIABLE

VIABLE FUNCTIONAL?

Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: important implications for quality assurance of stem cell transplant

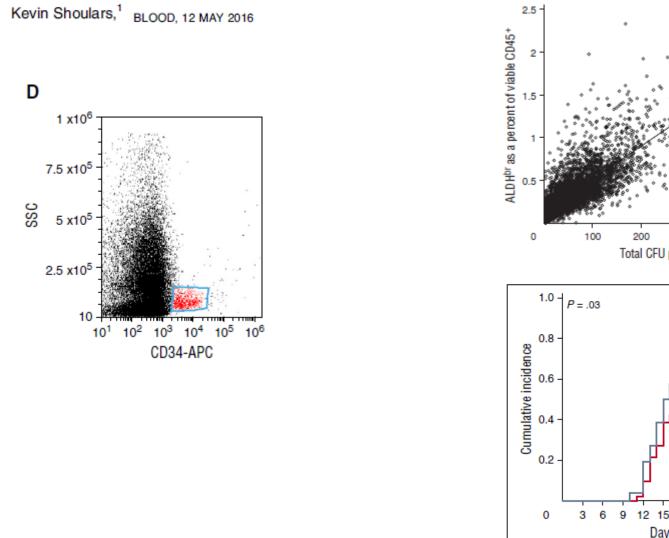
programmes Daniel A. Morgenstern,¹ British Journal of Haematology, 2016,

PBSC sample	Cryopreservation method	WBC (× 10 ⁹ /l)	Viability	CFU-GM/well	CFU-GM \times 10 ⁶ /ml of product (thawed yield)
Sample 1	Fresh	145	100%	32.8	0.38 (100%)
	UCLH -80°C freezer	166	78%	17.0	0.23 (59%)
	GOSH -80°C freezer	175	79%	17.5	0.25 (64%)
	GOSH CRF	176	77%	0.0	0.00 (0%)
Sample 2*	Fresh	204	99%	5.5	0.09 (100%)
	UCLH -80°C freezer	239	90%	5.0	0.10 (106%)
	GOSH -80°C freezer	239	78%	5.25	0.10 (112%)
	GOSH CRF	242	79%	0.0	0.00 (0%)
Sample 3*	Fresh	210	98%	3.25	0.06 (100%)
	UCLH -80°C freezer	237	82%	3.5	0.07 (118%)
	GOSH -80°C freezer	234	64%	2.25	0.04 (47%)
	GOSH CRF	251	80%	0.0	0.00 (0%)
Sample 4	Fresh	87	99%	47.0	0.33 (100%)
	GOSH -80°C freezer	100	76%	28.5	0.23 (70%)
	GOSH CRF	97	89%	0.0	0.00 (0%)


Table III. Results of four split-harvest cryopreservation procedures comparing different methods

Re-evaluation of progenitor thresholds and expectations for haematopoietic recovery based on an analysis of 810 autologous transplants: Implications for quality assurance

Michael J. Watts,1 British Journal of Haematology, 2016,


2x10^{6/}Kg OK

<2x10⁶: check with colony forming units: CFU>2x10⁵/Kg OK

1 x10⁶CD34+/Kg is enough if part of a greater collection

Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay

95% CI 0.76-0.79 P-value < .0001 300 400 500 600 Total CFU per 10⁵ cells plated 0.5 (N = 26) 12 15 18 21 24 27 30 33 36 39 42 Days post transplant 29

Ν

Spearman rho

3908

0.78

- CD34+ stem cell dose
- CD34+ stem cell viability and outcome

•CD34+ stem cell functionality

• CD34+, again...no, that's enough! what else besides CD34+?

 \rightarrow the immune perspective

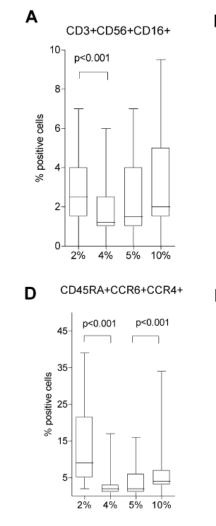
- Among the CD34+ stem cells, the CD34+/CD133+/CD38– most primitive subsets are known to have high self-renewal and repopulation capacity
- CD34+ / 38- and are thought to be responsible of rapid engraftment

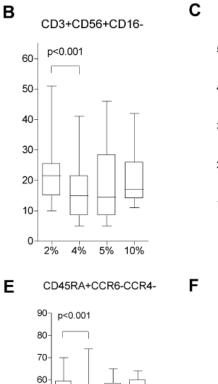
after auto-SCT.

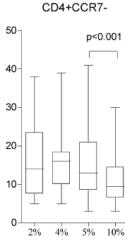
• Unclear impact on long-term stable engraftment

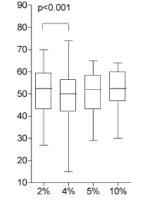
- CD34+ stem cell dose
- CD34+ stem cell viability and outcome

•CD34+ stem cell subsets

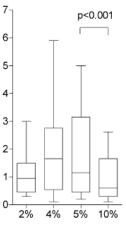

•CD34+ stem cell functionality

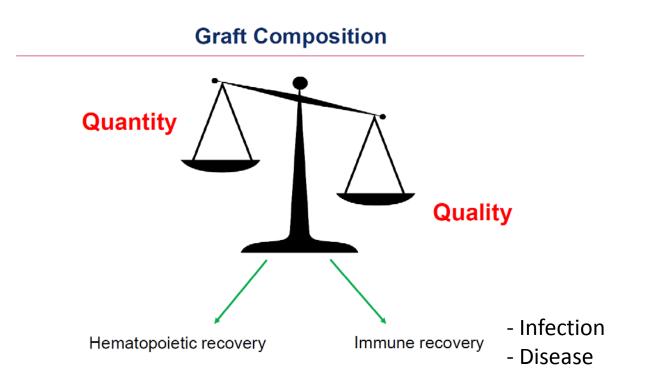

- CD34+, again...no, that's enough! what else besides CD34+?
 - \rightarrow the immune perspective


What else besides CD34+? the immune perspective


We might be interested in these, as well:

-CD3+/4+ -CD3+/8+ -CD19+ -CD3+/56+ -pDC [...]



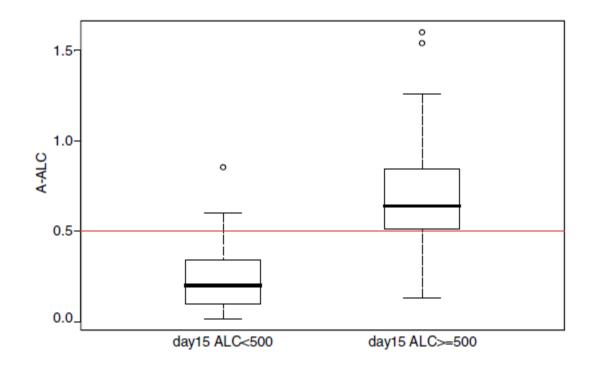


CD4+CD25+Foxp3+

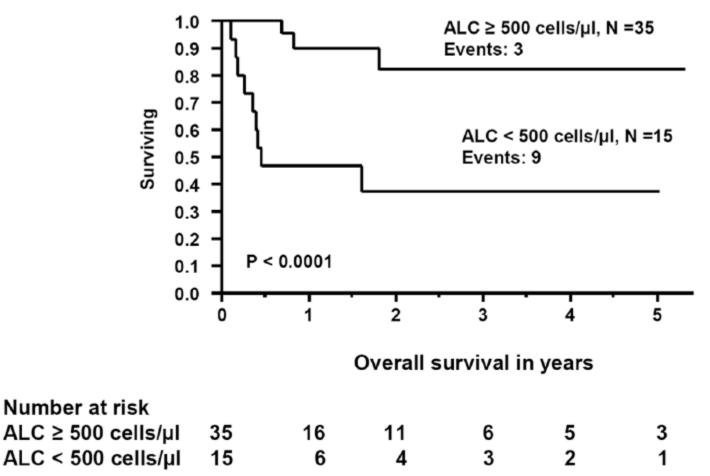
Knut Liseth, TRANSFUSION 2009;

What else besides CD34+? the immune perspective

Achieving a sufficient CD34+ stem cell dose is certainly an essential goal, but... ...graft quality in terms of immune cell subsets and immune recovery is acquiring increasing importance The number of lymphocytes infused within the graft (A-ALC), has been shown to be strictly related to Absolute lymphocyte count on day 15 (ALC-15)

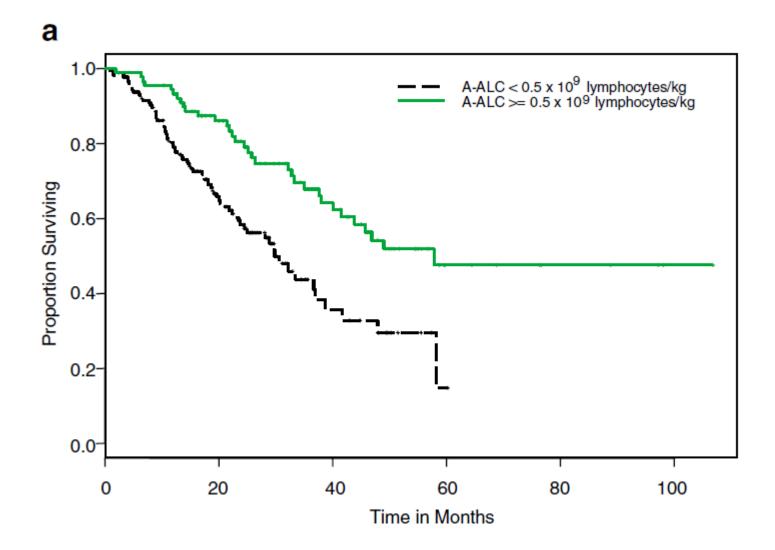

 Absolute lymphocyte count on day 15 has been reported to be an independent prognostic factor for OS in patients undergoing auto-SCT, both in multiple myeloma and NHL patients.

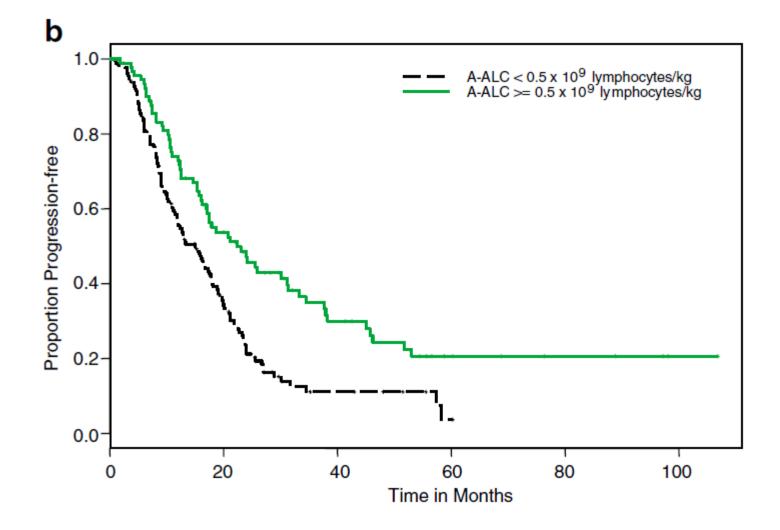
CD34+ stem cell dose does not affect immune recovery!


Porrata LF, Leuk Lymphoma 2003 Porrata LF, Leukemia 2004 Atta EH, Am Journ Hematol, 2009 Porrata LF, Biol Blood Marrow Transplant 2008 Porrata LF, Biol Blood Marrow Transplant 2014 Porrata LF, J Hematol Oncol 2015

What else besides CD34+? the immune perspective

A-ALC vs day15 ALC


NHL patients


NK cell count at day 15 post auto-SCT predicts better OS

Porrata LF, Biol Blood Marrow Transplant 2008

MM patients

Porrata LF, Leukemia 2004

Porrata LF, Leukemia 2004

Graft Composition

- Main focus of the clinician is the CD34+ stem cell dose → the only generally accepted indicator of graft quality¹
- Increasing knowledge in graft composition ^{1,2,3,4,5,6}:
 - Role of CD34+ subpopulations
 - Immune cell subsets
 - Influence on engraftment
 - Immune recovery
 - Anti-tumor activity⁵
 - Impact on patient's outcome
- Effect of different mobilization agents on graft composition⁶

Mohty M *et al.* Bone Marrow Transplant. 2014;49(7):865-72
 Saraceni F *et al.* Bone Marrow Transplant. 2015;50(7):886-91.
 Porrata LF *et al.* Biol Blood Marrow Transplant. 2014;20(11):1804-12

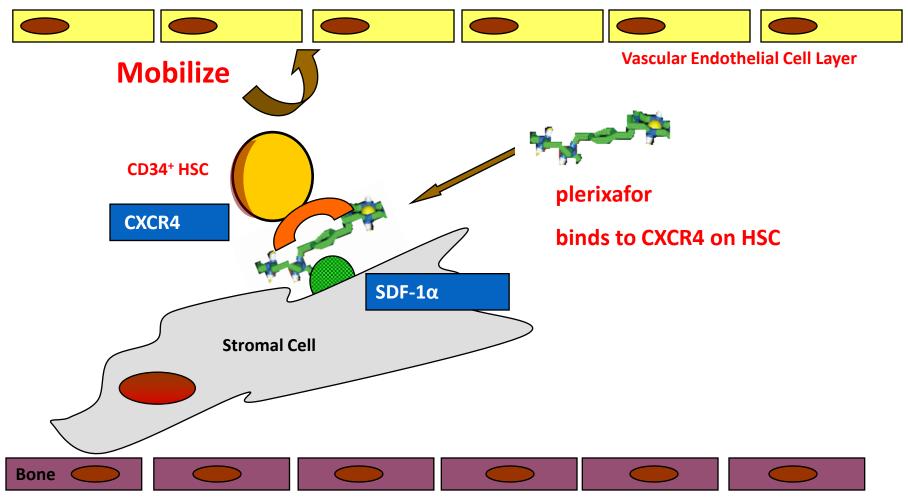
 Jantunen *et al.* Expert Rev Hematol. 2016;9(8):723-32
 Kohrt *et al.* Eur. J. Immunol. 2010. 40: 1862–1869
 Fruehauf *et al.* Biol Blood Marrow Transplant. 2010;16:1629-1648

Author	Study	Disease(s)	No. of patients	Proportion of CD34 $^+$ /38 $^-$ mobilized (% of all CD34 $^+$ stem cells)		
				G-CSF	G-CSF+plerixafor	
Fruehauf <i>et al.</i> ¹⁰	Prospective	MM, NHL	15	0.5	4	0.004
Varmavuo <i>et al</i> . ¹¹	Prospective	NHL	34	1.6 ^a	2.9 ^a	0.09
Varmavuo <i>et al.</i> ¹²	Retrospective	MM	21	0.6 ^a	3.5	0.02
Roug et al. ¹³	Prospective	MM, NHL, HD	22		Higher mobilization ^b	0.03
Taubert <i>et al.</i> 9	Prospective	MM	8		2,8-Fold increase compared with G-CSF only	n.a.

 Table 1. Studies comparing G-CSF and plerixafor mobilization of the most primitive CD34⁺/38⁻ stem cell subset

Plerixafor may increase mobilization of CD34+/CD38– stem cell subpopulation when compared with G-CSF alone or G-CSF combined with chemotherapy

Graft cell subset	Authors	Mobilizing regimen used and relative efficacy (if compared)				Outcome implications (if evaluated)
		CT+ G-CSF	G- CSF	G-CSF +MZ	CT+GCSF +MZ	
	Porrata et al. ²²		٠			A-ALC > 0.5×10^9 /kg predicts better OS and PFS A-ALC independent prognostic factor for OS and DFS ²²
	Porrata et al. ²¹	● ^a				A-ALC > 0.5×10^9 /kg predicts better OS and PFS A-ALC independent prognostic factor for OS and PFS ²¹
	Holtan <i>et al.,³² Varmavuo</i> <i>et al.</i> ³³		٠	••		No relapses in G-CSF+MZ group, 15/19 in the G-CSF group ³²
	and Gaugler <i>et al.</i> ²⁷ Varmavuo <i>et al.</i> ^{11,29}	•			••	Not significative ³³
В	Varmavuo <i>et al.</i> ¹²	•			$\bullet \bullet^{D}$	
NK	Porrata <i>et al.</i> ²⁰		•		b	NK-15 $>$ 80/µL predicts better OS and DFS NK-15 independent prognostic factor for OS ²⁰
Trog	Varmavuo et al. ^{11,12,29} Gaugler et al. ²⁷	•				
Treg DC	Gaugler et al. ²⁷ and					
	Gazitt et al. ²⁸		•			


T lymphocytes; Treg = regulatory T cells; \bigcirc = higher mobilization compared with \bigcirc . ^aPatients received either G-CSF or GM-CSF, 8/267 received only GM-CSF. ^bFour of nine patients did not receive chemotherapy but only G-CSF+plerixafor.

plerixafor may increase mobilization of immune effectors when compared with G-CSF alone or G-CSF combined with chemotherapy

CHT is heavily toxic to lymphocytes

PLERIXAFOR: Mechanism of HPC Mobilization

Blood

Mobilization strategy can influence graft cellular composition, therefore *maybe* graft-vs-disease activity and anti-infectious potential and *maybe* patient outcome?

This would be fantastic!!

Higher median A-ALCs were observed in the AMD3100 group compared with the control group (4.16 x 10(9) lymphocytes/kg vs. 0.288 x 10(9) lymphocytes/kg; P < 0.0001). With a median follow-up of 20 months (range, 4-24 months), <u>no relapses were reported in</u> the AMD3100 group compared with 15 of 29 in the control group (P < 0.02).

Holtan SG, Clin Lymphoma Myeloma 2007

Initial flow cytometry characterization of graft cell subsets

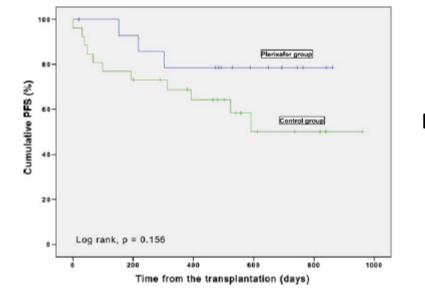
Variable	Stem cell collection	Stem cell collection	n velue
variable	with plerixafor* $(n = 13)$	without plerixafor* (n = 13)	p value
Graft volume (mL)	100 (43-190)	80 (45-140)	0.280
Graft sample preservation time (days)	299 (31-450)	291 (103-397)	0.898
CD34+ cell content (×10 ⁶ /kg) after 7-AAD	1.45 (0.40-4.40)	1.80 (0.31-4.74)	0.858
CD3+ cell content (×10 ⁶ /kg)	75.3 (14.6-327.3)	21.3 (9.1-159.4)	0.004
CD3+CD4+ cell content (×10 ⁶ /kg)	32.7 (10.6-132.8)	12.4 (6.9-51.5)	0.002
CD3+CD8+ cell content (×10 ⁶ /kg)	33.4 (4.2-200.5)	8.8 (2.2-125.0)	0.006
CD19+ cell content (×10 ⁶ /kg)	0	0	NA
NK (CD3-CD16/56+) cell content (×10 ⁶ /kg)	5.1 (0.2-30.40)	1.5 (0.3-8.0)	0.045
CD4+/CD8+ cell ratio	0.98 (0.34-3.04)	1.41 (0.28-5.06)	0.228

Finnish group, early plerixafor era

Chemomobilization w ot w/o plerixafor. NHL.

Initial observation of higher CD3+/NK mobilization with plerixafor

Varmavuo, Transfusion 2012


VALTOLA ET AL.

Blood graft content (×10 ⁶ cells/kg)	Mobilization with	Mobilization w/a	p valuet
	plerixafor $(n = 15)$	plerixafor (n = 26)	p value†
CD34+ without 7-AAD	2.2 (0.8-6.7)	3.5 (1.9-14.9)	0.001
CD34+ with 7-AAD	2.0 (0.6-5.7)	3.1 (1.5-14.3)	0.006
CD34+CD133+CD38-	0.07 (0.01-0.17)	0.05 (0.11-0.35)	NS
Proportion of CD34+CD133+CD38- cells from all CD34+ cells (%)	3.5 (0.8-10.8)	1.7 (0.44-5.3)	<0.001
CD3+	160.9 (49.2-454.4)	58.6 (10.9-415.4)	< 0.001
CD3+CD4+	81.1 (29.1-267.1)	35.2 (7.7-114.3)	< 0.001
CD3+CD8+	75.3 (16.5-279.1)	21.0 (3.1-301.8)	0.001
CD19+	0.0 (0.0-0.01)	0.0 (0.0-3.2)	NS
NK	20.4 (0.4-39.5)	4.8 (0.6-20.7)	< 0.001

46 NHL pts Chemomobilization w ot w/o plerixafor higher CD34+/38-, CD3+/NK mobilization with plerixafor

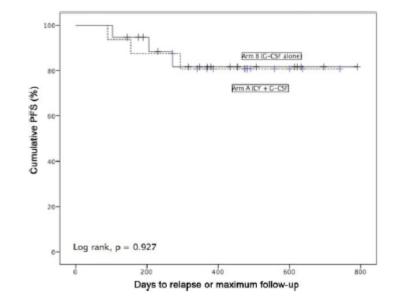
Valtola, Transfusion 2015

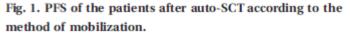
Variable	Mobilization with plerixafor $(n = 14)$	Mobilization without plerixafor $(n = 17)$	p value†
Blood flow cytometry 1 month afte		plotivator (ii = 17)	pradoj
CD3+	1.2 (0.5-3.1); 14	1.1 (0.2-3.6); 17	NS
CD3+CD4+	0.3 (0.1-0.6); 14	0.2 (0.1-1.5); 17	NS
CD3+CD8+	0.9 (0.3-2.5); 14	0.9 (0.1-2.8); 17	NS
(NK)	0.4 (0.1-0.6); 14	0.2 (0.02-0.7); 17	0.001
CD19+	0.0 (0.0-0.0); 14	0.0 (0.0-0.0); 17	NS
CD4/CD8- ratio	0.3 (0.2-0.8); 14	0.3 (0.2-1.0); 17	NS
Blood flow cytometry 3 months aft			
CD3+	1.4 (0.4-3.3); 13	1.7 (0.3-4.8); 16	NS
CD3+CD4+	0.4 (0.2-0.7); 13	0.3 (0.1-0.9); 16	NS
CD3+CD8+	1.1 (0.2-2.8); 13	1.2 (0.1-4.2); 16	NS
NK	0.2 (0.1-0.9); 13	0.2 (0.1-0.3); 16	NS
CD19+	0.0 (0.0-0.2); 13	0.0 (0.0-0.3); 16	NS
CD4/CD8- ratio	0.3 (0.1-0.9); 13	0.3 (0.1-1.1); 16	NS
Blood flow cytometry 6 months aft	er auto-SCT (×10 ⁹ /L)		
CD3+	1.3 (0.5-4.0); 12	1.2 (0.3-2.4); 14	NS
CD3+CD4+	0.3 (0.2-0.6); 12	0.3 (0.1-0.6); 14	NS
CD3+CD8+	0.8 (0.3-3.4); 12	1.0 (0.2-2.1); 14	NS
NK	0.2 (0.1-1.1); 12	0.1 (0.03-0.3); 14	NS
CD19+	0.0 (0.0-0.3); 12	0.0 (0.0-0.3); 14	NS
CD4/CD8- ratio	0.4 (0.2-1.1); 12	0.4 (0.1-1.3); 14	NS
lgG (g/L) at 6 months	5.1 (1.4-5.7); 6	6.2 (1.3-13.0); 12	NS

plerixafor

No plerixafor

Fig. 1. Cumulative PFS of the patients.

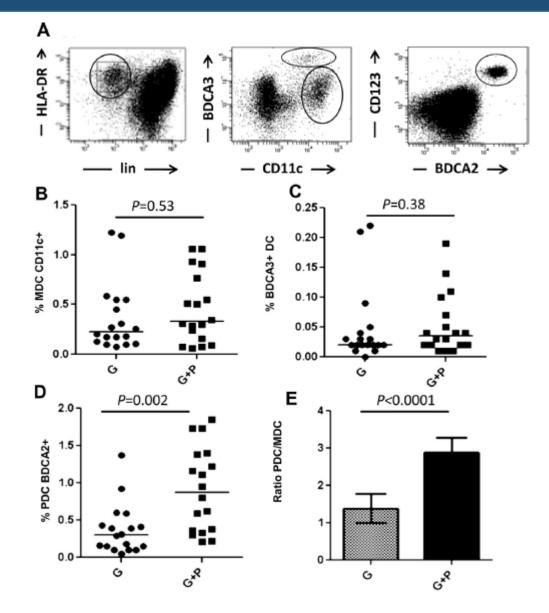

Valtola, Transfusion 2015


Blood graft content (×10 ⁶ cells/kg)	Arm A (CY plus G-CSF), n = 17	Arm B (G-CSF), n = 19	p value†
CD3+	65.1 (28.3-283.0)	215.2 (50.4-683.6)	< 0.001
CD3+CD4+	45.2 (12.6-156.4)	116.3 (29.4-502.5)	0.001
CD3+CD8+	23.1 (5.3-133.9)	90.5 (20.8-197.3)	0.001
CD19+	2.03 (0.46-11.6)	8.7 (0.3-76.7)	< 0.001
NK	6.8 (0.9-36.1)	31.7 (15.5-144.7)	< 0.001

38 MM pts CY vs G mobilization, randomized Higher lympho mobilization in no-CHT arm

Variable	Arm A (CY plus G-CSF), n = 17	Arm B (G-CSF), n = 19	p value†
Blood flow cytometry 1 month	after auto-SCT (×10 ⁹ /L)		
CD3+	1.44 (0.7-5.9); 9	1.09 (0.3-2.5); 14	0.124
CD3+CD4+	0.31 (0.2-0.5); 9	0.33 (0.1-0.6); 14	0.829
CD3+CD8+	1.21 (0.5-5.4); 9	0.77 (0.2-2.2); 14	0.123
NK	0.27 (0.1-0.8); 9	0.46 (0.2-0.9); 14	0.083
CD19+	0.001 (0.0-0.06); 9	0.01 (0.0-0.03); 14	0.877
CD4/CD8- ratio	0.21 (0.0-0.56); 9	0.4 (0.0-1.2); 14	0.109
Blood flow cytometry 3 month	s after auto-SCT (×10 ⁹ /L)		
CD3+	1.37 (0.29-2.61); 14	1.06 (0.37-2.95); 19	0.038
CD3+CD4+	0.35 (0.11-0.55); 14	0.32 (0.16-0.75); 19	0.358
CD3+CD8+	1.1 (0.17-2.1); 14	0.69 (0.22-2.42); 19	0.035
NK	0.17 (0.07-0.36); 14	0.25 (0.14-0.51); 19	0.005
CD19+	0.15 (0.0-0.38); 14	0.09 (0.05-0.29); 19	0.760
CD4/CD8- ratio	0.26 (0.0-0.64); 14	0.4 (0.0-0.86); 19	0.142
Blood flow cytometry 6 month	s after auto-SCT (×10 ⁹ /L)		
CD3+	1.04 (0.48-1.8); 14	0.97 (0.35-1.61); 14	0.427
CD3+CD4+	0.34 (0.2-0.62); 14	0.37 (0.18-0.71); 14	0.874
CD3+CD8+	0.67 (0.24-1.44); 14	0.62 (0.18-1.27); 14	0.511
NK	0.15 (0.07-0.44); 14	0.26 (0.1-0.75); 14	0.014
CD19+	0.13 (0.0-0.52); 14	0.07 (0.01-0.24); 14	0.352
CD4/CD8- ratio	0.4 (0.0-1.31); 14	0.6 (0.0-1.1); 14	0.164

Faster NK cell recovery in no-CHT arm


Similar outcome

Valtola, Transfusion 2016

Plasmacytoid dendritic cells (PDCs: CD123+BDCA2+HLA-DR+)

- Significant mobilization with PLX

 Unknown implications in anti-disease activity and immune regulation

P033

Effects of plerixafor in the lymphocyte count in aphaeresis product

T Arias Fernandez¹, LR Morais Bras², J Zanabili Al-Sibbai², JM Garcia Gala², E Martinez Revuelta², LF Avila Idrovo², E Colado Varela² and F Garcia Menendez-Tevar²

¹Hematology, Hospital Universitario Central de Asturias, Spain and ²Hematology, Hospital Universitario Central de Asturias, Spain 38 MM and NHL pts G vs G+PLX Higher CD34+ in NHL No difference in MM

Diagnosis	Mobilization	n	CD3+ x 10 ⁶ /kg (mean ± DS)	Р
NHL	G-CSF	8	171.18 (± 145.47)	0.017
NAL	Plerixafor+ G-CSF	10	205.89 (± 145.472)	0.017
	G-CSF	4	440.16 (± 197.52)	0.063
мм	Plerixafor+ G-CSF	16	278.89 (± 94.45)	0.005

Table 1. Results of CD3+ cell in product.

P039

Impact of lenalidomide induction in the mobilization of CD34+ cells, blood graft cellular composition and posttransplant recovery in myeloma patients: a prospective multicenter study

A Partanen¹, J Valtola¹, R Silvennoinen², A Ropponen³, T Siitonen⁴, M Putkonen⁵, M Sankelo⁶, J Pelkonen^{3,7}, P Mäntymaa⁷, V Varmavuo⁸ and E Jantunen¹

60 MM pts Prior lena yes vs no Similar mobilization of immune subsets

Table1. Mobilization and harvesting results in myeloma patients according to the previous lenalidomide use

Variable	LEN(+) n=26	LEN(-) n=34	p-value
Peak B-CD34 ⁺ cell count x10 ⁶ /L, mean(range)	85(12-291)	122(17-415)	0.477
Peak CD34 ⁺ count >100x10 ⁶ /L, N (%)	5(19)	15(44)	0.333
Peak CD34⁺count <20x10 ⁶ /kg, N (%)	1(3)	3(8)	0.261
B-CD34 ⁺ cells x10 ⁶ /L at	73(13-291)	104(13.4-415)	0.391
the time of first apheresis, mean (range)			
CD34 ⁺ cell yield x10 ⁶ /kg with first apheresis, mean (range)	4.2(0.9-14.7)	7.0(0.8-17.8)	0.362
Total yield CD34 ⁺ cells x10 ⁶ /kg harvested, mean (range)	7.1(2-14.7)	8.5(2-17.8)	0.854
CD34 ⁺ cells yield > 4x10 ⁶ /kg, N (%)	21(80)	28(82)	0.821
CD34 ⁺ cells yield > 6x10 ⁶ /kg, N (%)	12(46)	21(61)	0.663
The number of apheresis, mean (range)	2.0(1-4)	1.5(1-3)	0.039

P635

Blood graft composition and post-transplant recovery in myeloma patients mobilized with plerixafor

J Valtola¹, R Silvennoinen^{2,3}, A Ropponen⁴, T Siitonen⁵, M Säily⁶ M Sankelo⁷, M Putkonen⁸, A Partanen³, M Pyörälä¹ E-R Savolainen⁹, P Mäntymaa¹⁰, J Pelkonen^{11,10}, E Jantunen and V Varmavuo¹²

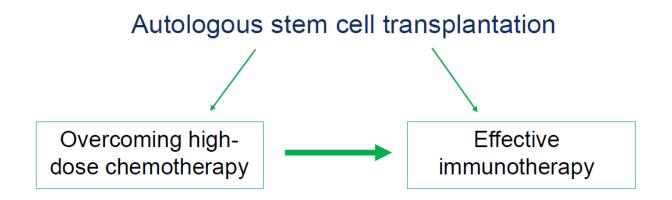

-87 MM pts -Chemomob +/- PLX -no difference CD34+ dose -Higher primitive CD34+ 38higher in PLX -Higher CD3+ , NK in PLX -Faster CD3+CD4+ T cell recovery!

Table 1. Graft cellular composition according to the use of plerixafor.

Variable	Patients mobilized w plerixafor (n = 10)	Patients mobilized w/a plerixafor (n = 77)	p value	Patients mobilized w plerixafor (n =	Patients mobilized	p value
A CONTRACTOR OF A CONTRACTOR A CONTRA				10)	w/a plerixafor (n = 77)	
CD34" w/a 7-AAD (x10 ^{6/} /kg)	4.9 (1.9-13.1)	5.0 (1.7-17.4)	0.545	3.2 (1.9-7.6)	3.2 (1.0-10.3)	0.680
CD34 ⁺ w 7-AAD (x10 ^{6/} /kg)	3.2 (1.2-10.0)	3.6 (0.2-14.3)	0.284	1.8 (1.2-4.7)	2.4 (0.2-7.2)	0.581
CD34*CD133* CD38" (x10 ^{s/} /kg)	0.1 (0.04-0.75)	0.09 (0.005-106.0)	0.754	0.08 (0.04-0.35)	0.07 (0.005-103.0)	0.269
Proportion of CD34 ¹ CD133 ⁴ CD38 ⁻ from all CD34 ⁴ cells (%)	4.3 (2.6-7.5)	3.0 (0.3-22.1)	0.001	3.1 (1.9-5.6)	1.9 (0.2-11.1)	<0.001
and the second se	292.7 (58.3-683.6)	89.4 (5.5-496.5)	<0.001	210.6 (29.2-388.3)	54.8 (2.75-345.1)	<0.001
CD3 ⁺ CD4 ⁺ 2 (x10 ^{6/} /kg)	206.2 (37.6-502.5)	54.8 (3.4-249.9)	<0.001	128.2 (18.8-290.3)	31.6 (2.1-156.4)	<0.001
CD3 ⁺ CD8 ⁺ (x10 ^{6/} /kg)	86.6 (21.2-194.1)	25.6 (1.5-242.9)	0.004	74.1 (10.6-1941)	18.1 (0.75-195.0)	0.001
CD19*(x10 ^{6/} /kg)	17.6 (1.7-76.7)	2.2 (0.01-61.59)	0.001	14.1 (0.87-66.61)	1.2 (0.005-61.590)	<0.001
NK cells (x10 ^{6/} /kg)	28.3 (2.3-65.3)	9.2 (0.5-144.7)	0.015	27.1 (1.15-59.86)	6.9 (0.24-144.7)	0.008

Shift of paradigm

Graft design? Not quite there yet

- Is there something more besides CD34+?
 - YES, autologous graft is a crowded and variegate family of cell subsets

Autologous graft:

- -Not only a bag full of CD34+!
- -Powerful cell therapy
- -High immunological properties
- -Theoretic possibility to engineer immunocompetent graft
- -Platform for post-SCT immunotherapy

- **CD34+ stem cell dose**: at least 2x10⁶, target 5x10⁶ for rapid PLT recovery and higher efficacy of auto-SCT procedure
- CD34+ stem cell viability: of great importance for quality check, not enough to predict graft functionality
- •CD34+ stem cell functionality: the best parameter to be assessed, but how to do that?
- CD34+, again...no, that's enough! what else besides CD34+? Much more than just CD34+:
 - •CD34+/38- dose predicts rapid engraftment
 - immune cell subsets are associated with patient outcome
 - mobilization strategy may influence graft composition and potential

- **CD34+ stem cell dose**: at least 2x10⁶, target 5x10⁶ for rapid PLT recovery and higher efficacy of auto-SCT procedure
- CD34+ stem cell viability: of great importance for quality check, not enough to predict graft functionality
- •CD34+ stem cell functionality: the best parameter to be assessed, but how to do that?
- CD34+, again...no, that's enough! what else besides CD34+? Much more than just CD34+:
 - •CD34+/38- dose predicts rapid engraftment
 - immune cell subsets are associated with patient outcome
 - mobilization strategy may influence graft composition and potential

THANK YOU!