CARENZA ED ECCESSO DI FERRO: nuove conoscenze ed approccio terapeutico

Ore 9,20- 9,50 Fisiopatologia dei disordini del ferro E. Angelucci- Genova

ASH 50th anniversary review

Forging a field: the golden age of iron biology

Nancy C. Andrews¹

BLOOD The Journal of Hematology

JANUARY, 1958

VOL. XIII, NO. 1

Absorption of Iron as a Problem in Human Physiology

A Critical Review

By Hugh W. Josephs

Ham-Wasserman Lecture

Iron overload

"All things are poison, and nothing is without poison; only the dose permits something not to be poisonous."

Or, more commonly:

"The dose makes the poison."

Paracelsus (1493-1541)

Swiss Renaissance physician, philosopher, astrologer, botanist, alchemist, sometimes called father of toxicology

Iron is essential

- O₂ transport and exchange
 - haemoglobin and myoglobin
- Respiratory chain
 - complex I and III
- Biosynthetic pathways
 - haem synthesis
 - Fe/S cluster assembly
- DNA synthesis and repair
 - ribonucleotide reductase
 - endonuclease III
- Cell growth and proliferation

Iron is toxic

- Ability to transfer electrons
- Production of free O₂ radicals

Fenton reaction:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$

Iron plays an essential role in several metabolic processes

Total body iron

about 4 g

Iron compartments:

Functional Transport Storage

Andrews, NEJM, 1999

Body iron homeostasis

Intestinal iron transport

estin

Iron donation to the plasma

Cellular iron transport

HEPCIDIN: A KEY IRON REGULATOR

DNA: 2.5 Kb, 3 exons - cDNA: 0,4 Kb

84 aa propeptide -> 20-25aa mature peptide

Liver product 4 S-S bonds Hairpin structure (antimicrobial peptide)

Positive regulation by iron and inflammation Negative regulation by anemia and hypoxia

Hepcidin: a key iron regulator in mice

Iron overload

(Nicolas et al, PNAS 2001 Lesbordes-Brion et al, Blood 2006) Iron deficiency

(Nicolas et al, PNAS 2002)

Hepcidin: a key iron regulator in humans

Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis

Published online 9 December 2002; doi:10.1038/ng1053

Animal models indicate that the antimicrobial peptide hepcidin (HAMP; OMIM 606464) is probably a key regulator of iron absorption in mammals. Here we report the identification of two mutations (93delG and 166C \rightarrow T) in HAMP on 19q13 in two families with a new type of juvenile hemochromatosis.

Fig. 2 Comparison of the predicted mutant peptides resulting from the 93delG and 166C->T mutations with normal pro-hepcidin.

Roetto et al Nat Genet 2003

Hepcidin: a key iron regulator

HEPCIDIN REGULATION BY INFLAMMATION

HEPCIDIN REGULATION BY ANEMIA

Proposed mechanisms controlling hepcidin production in different MDS types

Iron is essential

- O₂ transport and exchange
 - haemoglobin and myoglobin
- Respiratory chain
 - complex I and III
- Biosynthetic pathways
 - haem synthesis
 - Fe/S cluster assembly
- DNA synthesis and repair
 - ribonucleotide reductase
 - endonuclease III
- Cell growth and proliferation

Iron is toxic

- Ability to transfer electrons
- Production of free O₂ radicals

Fenton reaction:

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$

The dark side of iron

ROS, oxidative stress NTBI, LPI

Iron overload

"All things are poison, and nothing is without poison; only the dose permits something not to be poisonous."

Or, more commonly:

"The dose makes the poison."

Paracelsus (1493-1541)

Swiss Renaissance physician, philosopher, astrologer, botanist, alchemist, sometimes called father of toxicology

Iron toxicity depends on many factors in addition to the level of iron per se

Coates TD. Free Radic Biol Med 2014

Fe Toxicity tissue =

$\Sigma_{\text{Tissue Reactive Iron } \mathbf{x}}$ Genetics \mathbf{x} Environmental Factors \mathbf{x} Time

Coates TD. Free Radic Biol Med 2014

Iron Distribution and Turnover

Hershko C, et al. Ann NY Acad Sci. 1998;850:191-201.

Imbalance of Distribution and Turnover of Body Iron With Transfusion Therapy

Iron balance is disturbed by blood transfusion because the body cannot remove the excess iron

NTBI=non-transferrin-bound iron.

Hershko C, et al. Ann NY Acad Sci. 1998;850:191-201.

Relationship between the assay concentrations and transferrin saturation (TSAT).

Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

Louise de Swart,¹ Jan C.M. Hendriks,² Lisa N. van der Vorm,³ Z. Ioav Cabantchik,⁴ Patricia J. Evans,⁵ Eldad A. Hod,⁶ Gary M. Brittenham,⁷ Yael Furman,⁸ Boguslaw Wojczyk,⁶ Mirian C.H. Janssen,⁹ John B. Porter,⁶ Vera E.J.M. Mattijssen,³⁰ Bart J. Biemond,¹¹ Marius A. MacKenzie,¹ Raffaella Origa,¹² Renzo Galanello,¹² Robert C. Hider,¹³ and Dorine W. Swinkels³

Louise de Swart et al. Haematologica 2016;101:38-45

Uncontrolled Uptake of Labile Iron Leads to Cell and Organ

Uncontrolled Uptake of Labile Iron Leads to Cell and Organ

Uncontrolled Uptake of Labile Iron Leads to Cell and Organ

LIP rises following prolonged exposure of cells to **labile plasma iron (LPI)** or when faulty cell iron-utilizing machineries lead to maldistribution of the metal (e.g. excessive iron accumulation in mitochondria)

An excessive rise in LIP can promote the generation of reactive-O species (ROS) by reacting with respiratory O intermediates and thereby override the cellular antioxidant defences and chemically damage cell components and associated functions

The dark side of iron – NTBI and LPI

- The labile iron pool (LIP, LCI) redox active, exchangeable and chelatable
- LIP levels are maintained within a 0.5–1.5 µM physiological range by an iron-sensing-transducing machinery that coordinately regulates uptake vs storage so as to support Fe utilization and minimize Fe-O-driven oxidations
- LIP rises following prolonged exposure of cells to labile plasma iron (LPI) or when faulty cell iron-utilizing machineries lead to maldistribution of the metal (e.g. excessive iron accumulation in mitochondria)
- An excessive rise in LIP can promote the generation of reactive-O species (ROS) by reacting with respiratory O intermediates and thereby override the cellular antioxidant defences and chemically damage cell components and associated functions

NF-κB, nuclear factor-κB; TGF, transforming growth factor.

The dark side of iron: ROS and oxidative stress The battlefield of oxidative stress

T.D. Coates / Free Radical Biology and Medicine 72 (2014) 23-40

 ...pituitary, pancreatic and cardiac iron detected by MRI reflects timeaveraged exposure to toxic reactive iron since loading of these organs essentially only occurs when NTBI/LPI enters through ion channels and transporters.

Coates, Carson Wood & Berdoukas. Management of Iron Overload in Hemoglobinopathies: What is the 1 Appropriate Target 2 Iron Level?. Annals of the New York Academy of Sciences 2016

Why does iron toxicity mainly affect heart and liver?

Fe Toxicity tissue =

 $\Sigma_{\underline{\text{Tissue Reactive Iron } \mathbf{x}} \underline{\text{Genetics}} \mathbf{x} \underline{\text{Environmental Factors}} \mathbf{x} \underline{\text{Time}}$

Coates TD. Free Radic Biol Med 2014

Angelucci & Pilo Ann N Y Acad Sci. 2016 Mar;1368(1):115-21

Research Article Uptake of Non-Transferrin Iron by Erythroid Cells

Eugenia Prus and Eitan Fibach

Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, P.O. Box 12000, Jerusalem 91120, Israel Correspondence should be addressed to Eitan Fibach, fibach@yahoo.com

Received 20 September 2010; Accepted 7 November 2010

- RBCs, retics, and developing erythroid precursors take up iron through a Tf-independent pathway.
- This pathway is operative under pathological ironoverload situation in the presence of non-Tf iron in the serum.
- The incoming non-Tf iron does not participate in haem synthesis and Hb production, but induces ROS generation, which results in cytotoxicity and a decrease in the erythroid cell yield.

Proliferation of BFU-E in patients with normal and elevated serum ferritin

Thank you for your very kind attention