Una patologia frequente e curabile

Anemia sideropenica e carenza di ferro: un problema globale per cui è necessaria una diagnosi precisa

Fabiana Busti, MD, PhD

Dipartimento di Medicina, Università di Verona

Centro di Riferimento per i Disordini del Metabolismo del Ferro

www.gimferverona.org

Milano, 29 novembre 2019

Disclosures

- Sanofi Genzyme

- The global burden of anemia and iron deficiency
- Pathophysiology of iron metabolism and its connections with erythropoiesis
- Hepcidin and iron deficiency (absolute vs functional)
- Diagnosis (biomarkes, cut-off, challenges and pitfalls)

Outline

The global burden of anemia and iron deficiency

- Pathophysiology of iron metabolism and its connections with erythropoiesis
- Hepcidin and iron deficiency (absolute vs functional)
- Diagnosis (biomarkes, cut-off, challenges and pitfalls)

Anemia burden is high, affecting 27% of the world's population Iron-deficiency is the dominant cause (≥60%) of anemia globally

Children aged 0–5 years, women of childbearing age, and pregnant women are particularly at risk

Kassebaum NJ et al., 2016 Hematol Oncol Clin N Am

- The global burden of anemia and iron deficiency
- Pathophysiology of iron metabolism and its connections with erythropoiesis
- Hepcidin and iron deficiency (absolute vs functional)
- Diagnosis (biomarkes, cut-off, challenges and pitfalls)

Erythropoiesis is the greatest consumer (80%) of circulating iron

Iron is essential:

- Respiration
- Energy production
- Enzymes function
- DNA sythesis

. . .

- Cell proliferation
- Erythropoiesis

 In healthy humans, steady-state erythropoiesis involves the production of 200 billion new RBCs per day (~2.4 million/second)

Most of the iron needed daily is provided through recycling by macrophages

Body iron content is tightly regulated by the liver hormone hepcidin

The main role of hepcidin is to control surface expression of FPN

HEP-(atic) CIDIN (antimicrobial)

 small (25 aa) peptide mainly produced by the <u>liver</u>

• <u>defensin-like</u> (innate immunity-related peptides with natural antimicrobial activity)

• interact with its receptor (ferroportin, the only known iron exporter from the cells, ubiquitous but highly expressed in duodenal cells, macrophages, hepatocytes)

FPN localized on cell membrane <u>↑ Iron export</u>

control

Hepcidin-ferroportin axis regulates the flow of iron into plasma, and thereby regulates the distribution of iron in the body

Hepcidin is regulated by multiple (contrasting) stimuli

Girelli D et al., Blood 2016

High hepcidin levels, induced by inflammation (IL-6), plays a central role in the pathogenesis of anemia of chronic disease

Anemia of inflammation (AI)

1° cause of anemia in hospitalized patients!

Ganz T C, New Eng J Med 2019

- The global burden of anemia and iron deficiency
- Pathophysiology of iron metabolism and its connections with erythropoiesis
- Hepcidin and iron deficiency (absolute vs functional)
- Diagnosis (biomarkes, cut-off, challenges and pitfalls)

Classical markers of iron deficiency anemia

IDA = anemia (Hb<12 g/dl females, <13 males) with \downarrow MCH (<26 pg), \downarrow MCV(<80 fl), and \downarrow reticulocytes

- Intracellular (ubiquitous)
- Function: storage
- Binds up to 4,500 Fe atoms
- trace (ng/ml) in serum
- Ferritin <30 ng/ml excellent marker of "pure" absolute iron deficiency
- Acute phase reactant

TSAT TSAT% = serum iron (µg/dl) Tf (g/l) x 1,42

- Extracellular
- Function: transport
- Binds 2 Fe atoms
- Abundant (g/l) in serum
- **TSAT** < 20% = iron restricted erythropoiesis *likely*

The diagnosis of iron deficiency anemia in the context of inflammation is challenging (but possible!)

• Higher ferritin cut-off ± TSAT <20%

e.g., < 100 ng/ml or <300 ng/ml if TSAT<20% in chronic heart failure

- Proportion of hypochromic RBCs useful in CKD; >6% indicative of IDA
- Reticulocyte Hb content (CHr or Ret-He) useful in CKD; diagnostic if <27.2 pg; poor sensibility in thalassemia and ↑ MCV
- sTfR; sTfR/Log Ferritin ratio

absence of standardized cut-off, inflammation? useful for distinguishing IDA and AI; e.g. ratio<1 AI; ratio>2-3 IDA

Bone marrow aspiration

gold standard, but invasive and expensive

			A
	8000		A 279.00
ĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨ	1.	X	A
⊴OM₽₽M₽₽₩₽₽₩>₽			A
©&@•□\\ ```````````````````````````````````		X	
		(TAR)	A
i>m∳@ m_	Djrð	220	⊡′ }₀

The trails hand the

Hepcidin measurement in clinical practice

Most promising applications	
6. Evaluation of suspected IRIDA	Virtually diagnostic in an appropriate clinical context
7. Evaluation of IO disorders	For example, ferroportin disease due to hepcidin resistant mutations
	(see text)
8. Diagnosis of concomitant ID in patients with ACD	Promising reports in rheumatoid arthritis and inflammatory bowel disease
	patients, and in African children
9. Guide for iron therapy	For example, selection of patients for direct IV supplementation; oral
	administration in children from developing countries with high
	prevalence of infectious diseases (see text)
10. Monitoring of treatments targeting the hepcidin/ferroportin axis	To be confirmed by further studies

- Refer to **age- and sex-specific** ranges
- Interpret the value into a **minimum laboratory context** (full blood count, ferritin, transferrin saturation, C reactive protein, serum creatinine, liver function test)
- Be aware of many potential confounders/comorbidities in the individual patient

Girelli D et al., Blood 2016

Management of ID/IDA requires a systematic search for the causes (physiologic and pathologic)

Increased demand: infancy, rapid growth (adolescence), menstrual blood loss, pregnancy, blood donation, elite athletes

Upper GI blood losses: esophagitis, gastritis, ulcers, cancer* or pre-malignant lesions, (antithrombotic drugs, NSAIDs)

Malabsorption: HP infection, atrophic gastritis, celiac disease, inflammatory bowel disease*, hookworm infest., drugs (e.g. PPI)

Lower GI blood losses: colon-rectal cancer or pre-malignant polyps, IBD*, ano-rectal lesions (e.g. hemorrhoids), angiodysplasia, hookworm infestation, (antithrombotic drugs)

Insufficient intake: poverty, malnutrition, diet (e.g. vegeratian, vegan, iron-poor)

Chronic hemolysis: e.g. damage heart valves, paroxysmal nocturnal hemoglobinuria, mycroangiopathic hemolysis

Genetic: IRIDA (TMPRSS6 mutations)

high

Iron-restricted erythropoiesis**: inflammation, ESAs, CKD

Genitourinary blood losses: heavy menses, menorrhagia, march hemoglobinuria

*also anemia of inflammation; ** functional and absolute ID may coexist

Concluding remarks

- ID/IDA are global health problems and common medical conditions in everyday clinical practice
- Associated with multiple adverse outcomes in all age groups
- Diagnosis is based on ferritin <30 ng/ml ± TSAT <20% (but determination of iron status may be more challenging if inflammation coexists → it is necessary to consider more indicators)
- Detection of causes is mandatory in order to:
- recognize evolutionary and potentially fatal diseases (e.g. GI cancer)
- improve symptoms and patient's quality of life
- avoid relapse after the treatment
- ensure optimal treatment's efficacy